On non-commutative operator graphs generated by covariant resolutions of identity

  • G. G. AmosovEmail author
  • A. S. Mokeev


We study non-commutative operator graphs generated by resolutions of identity covariant with respect to unitary representations of a compact group. Our main goal is searching for orthogonal projections which are anticliques (error-correcting codes) for such graphs. A special attention is paid to the covariance with respect to unitary representations of the circle group. We determine a tensor product structure in the space of representation under which the obtained anticliques are generated by entangled vectors.


Non-commutative operator graphs Covariant resolutions of identity Quantum anticliques Entangled vectors 



The authors are extremely grateful to the anonymous referee for a careful reading of the text and many fruitful remarks. This work is supported by the Russian Science Foundation under Grant 17-11-01388 and performed in Steklov Mathematical Institute of Russian Academy of Sciences.


  1. 1.
    Choi, M.D., Effros, E.G.: Injectivity and operator spaces. J. Funct. Anal. 24, 156–209 (1977)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Duan, R., Severini, S., Winter, A.: Zero-error communication via quantum channels, noncommutative graphs and a quantum Lovasz theta function. IEEE Trans. Inf. Theory 59, 1164–1174 (2013) arXiv:1002.2514
  3. 3.
    Knill, E., Laflamme, R., Viola, L.: Theory of quantum error correction for general noise. Phys. Rev. Lett. 84, 2525–2528 (2000)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Weaver, N.: A “quantum” Ramsey theorem for operator systems. Proc. Am. Math. Soc. 145, 4595–4605 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Amosov, G.G., Mokeev, A.S.: On construction of anticliques for noncommutative operator graphs. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 456, 5–15 (2017); J. Math. Sci. 234(3), 269–275 (2018). arXiv:1709.08062 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Amosov, G.G.: On general properties of non-commutative operator graphs. Lobachevskii J. Math. 39(3), 304–308 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. Springer, Berlin (2011)CrossRefGoogle Scholar
  8. 8.
    Wickert, R., van Loock, P.: Quantum error correction and detection: quantitative analysis of a coherent-state amplitude-damping code. Phys. Rev. A 89(5), 052309 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Kribs, D.W., Pasieka, A., Zyczkowski, K.: Entropy of a quantum error correction code. Open Syst. Inf. Dyn. 15, 329–343 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Holevo, A.S.: Quantum System, Channels, Information. De Gruyter, Berlin (2012)CrossRefGoogle Scholar
  11. 11.
    Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1996)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Smith, G., Yard, J.: Quantum communication with zero-capacity channels. Science 321, 1812–1815 (2008)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Shirokov, M.E.: On multipartite superactivation of quantum channel capacities. Probl. Inf. Transm. 51(2), 87–102 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bennett, C.H., Brassard, G., Jozsa, R., Crepeau, C., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations