Uniform finite-dimensional approximation of basic capacities of energy-constrained channels

  • M. E. ShirokovEmail author


We consider energy-constrained infinite-dimensional quantum channels from a given system (satisfying a certain condition) to any other systems. We show that dealing with basic capacities of these channels we may assume (accepting arbitrarily small error \(\varepsilon \)) that all channels have the same finite-dimensional input space—the subspace corresponding to the \(m(\varepsilon )\) minimal eigenvalues of the input Hamiltonian. We also show that for the class of energy-limited channels (mapping energy-bounded states to energy-bounded states) the above result is valid with substantially smaller dimension \(m(\varepsilon )\). The uniform finite-dimensional approximation allows us to prove the uniform continuity of the basic capacities on the set of all quantum channels with respect to the strong (pointwise) convergence topology. For all the capacities, we obtain continuity bounds depending only on the input energy bound and the energy-constrained diamond-norm distance between quantum channels (generating the strong convergence on the set of quantum channels).


Finite-dimensional subchannel Energy constraint m-Restricted capacities Quantum conditional mutual information Strong convergence of channels Energy-constrained diamond norm 



I am grateful to the participants of the workshop “Recent advances in continuous variable quantum information theory”, Barcelona, April 2016, for the stimulating discussion. I am grateful to A. Winter for sending me a preliminary version of the paper [5] used in this work. I am also grateful to A.S. Holevo and G.G. Amosov for useful comments and to M.M. Wilde for valuable communication concerning capacities of infinite-dimensional channels with energy constraints. Special thanks to Yu.V. Andreev and L.V. Kuzmin for the help with MATLAB. Many thanks are due to unknown reviewers for useful suggestions.


  1. 1.
    Holevo, A.S.: Quantum Systems, Channels, Information. A Mathematical Introduction. DeGruyter, Berlin (2012)CrossRefGoogle Scholar
  2. 2.
    Holevo, A.S.: Classical capacities of quantum channels with constrained inputs. Probab. Theory Appl. 48(2), 359–374 (2003)Google Scholar
  3. 3.
    Wilde, M.M., Qi,H.: Energy-constrained private and quantum capacities of quantum channels. arXiv:1609.01997
  4. 4.
    Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Winter, A.: Energy-Constrained Diamond Norm with Applications to the Uniform Continuity of Continuous Variable Channel Capacities. arXiv:1712.10267 (2017)
  6. 6.
    Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  7. 7.
    Aharonov, D., Kitaev, A., Nisan, N.: Quantum circuits with mixed states. In: Proceedings of the 30th STOC, pp. 20–30. ACM Press (1998)Google Scholar
  8. 8.
    Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  9. 9.
    Shirokov, M.E.: Energy-constrained diamond norms and their use in quantum information theory. Probl. Inf. Transm. 54(1), 20–33 (2018)CrossRefGoogle Scholar
  10. 10.
    Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Lindblad, G.: Expectation and entropy inequalities for finite quantum systems. Commun. Math. Phys. 39(2), 111–119 (1974)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221–250 (1978)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Lindblad, G.: Entropy, information and quantum measurements. Commun. Math. Phys. 33, 305–322 (1973)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Kuznetsova, A.A.: Quantum conditional entropy for infinite-dimensional systems. Theory Probab. Appl. 55(4), 709–717 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Shirokov, M.E.: Measures of correlations in infinite-dimensional quantum systems. Sbornik: Mathematics 207(5), 724–768 (2016)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Devetak, I., Yard, J.: The operational meaning of quantum conditional information. Phys. Rev. Lett. 100, 230501 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum mechanical entropy. J. Math. Phys. 14, 1938 (1973)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Shirokov, M.E.: Tight uniform continuity bounds for the quantum conditional mutual information, for the Holevo quantity and for capacities of quantum channels. J. Math. Phys. 58, 10, 102202 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Winter, A.: Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints. Commun. Math. Phys. 347(1), 291–313 (2016)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Shirokov, M.E.: Adaptation of the Alicki–Fannes–Winter method for the set of states with bounded energy and its use. Rep. Math. Phys. 81(1), 81–104 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Alicki, R., Fannes, M.: Continuity of quantum conditional information. J. Phys. A Math. Gen. 37(5), L55–L57 (2004)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Leung, D., Smith, G.: Continuity of quantum channel capacities. Commun. Math. Phys. 292, 201–215 (2009)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Giovannetti, V., Holevo, A.S., Garcia-Patron, R.: A solution of Gaussian optimizer conjecture for quantum channels. Commun. Math. Phys. 334(3), 1553–1571 (2015)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Holevo, A.S., Shirokov, M.E.: On classical capacities of infinite-dimensional quantum channels. Probl. Inf. Transm. 49(1), 15–31 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Holevo, A.S., Werner, R.F.: Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 63(3), 032312 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Wolf, M.M., Perez-Garcia, D., Giedke, G.: Quantum capacities of bosonic channels. Phys. Rev. Lett. 98(13), 130501 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Rosati,M., Mari,A., Giovannetti,V.: Narrow Bounds for the Quantum Capacity of Thermal Attenuators, arXiv:1801.04731
  28. 28.
    Sharma, K., Wilde, M.M., Adhikari, S., Takeoka, M.: Bounding the energy-constrained quantum and private capacities of phase-insensitive bosonic Gaussian channels. New J. Phys. 20, 063025 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    Kretschmann, D., Schlingemann, D., Werner, R.F.: A continuity theorem for Stinespring’s dilation. J. Funct. Anal. 255(8), 1889–1904 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Shirokov, M.E.: Continuity bounds for information characteristics of quantum channels depending on input dimension. arXiv:1604.00568

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteMoscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations