Skip to main content
Log in

Quantum key distribution with quantum walks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum key distribution is one of the most fundamental cryptographic protocols. Quantum walks are important primitives for computing. In this paper, we take advantage of the properties of quantum walks to design new secure quantum key distribution schemes. In particular, we introduce a secure quantum key distribution protocol equipped with verification procedures against full man-in-the-middle attacks. Furthermore, we present a one-way protocol and prove its security. Finally, we propose a semi-quantum variation and prove its robustness against eavesdropping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Currently, there are three companies offering commercial QKD systems: ID Quantique (Geneva), MagiQ Technologies, Inc. (New York) and QuintessenceLabs (Australia).

References

  1. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of ACM Symposium on Theory of Computation (STOC ’01), pp. 50–59 (2001)

  2. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993). https://doi.org/10.1103/PhysRevA.48.1687

    Article  ADS  Google Scholar 

  3. Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 01(04), 507–518 (2003). https://doi.org/10.1142/S0219749903000383

    Article  MATH  Google Scholar 

  4. Ashwin, N., Ashvin, V.: Quantum walk on the line. Tech. Rep. arXiv:quant-ph/0010117 (2000)

  5. Bae, J., Acín, A.: Key distillation from quantum channels using two-way communication protocols. Phys. Rev. A 75, 012,334 (2007). https://doi.org/10.1103/PhysRevA.75.012334

    Article  Google Scholar 

  6. Bavaresco, J., Herrera Valencia, N., Klckl, C., Pivoluska, M., Friis, N., Malik, M., Huber, M.: Two measurements are sufficient for certifying high-dimensional entanglement. arXiv:1709.07344 (2017)

  7. Beaudry, N.J., Lucamarini, M., Mancini, S., Renner, R.: Security of two-way quantum key distribution. Phys. Rev. A 88(6), 062,302 (2013)

    Article  Google Scholar 

  8. Bechmann-Pasquinucci, H., Tittel, W.: Quantum cryptography using larger alphabets. Phys. Rev. A 61, 062,308 (2000). https://doi.org/10.1103/PhysRevA.61.062308

    Article  MathSciNet  Google Scholar 

  9. Bedington, R., Arrazola, J.M., Ling, A.: Progress in satellite quantum key distribution. Npj Quantum Inf. 3, 30 (2017). https://doi.org/10.1038/s41534-017-0031-5

    Article  ADS  Google Scholar 

  10. Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, New York (1984)

  11. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992). https://doi.org/10.1103/PhysRevLett.68.557

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659–662 (2010). https://doi.org/10.1038/nphys1734

    Article  Google Scholar 

  13. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79, 032,341 (2009). https://doi.org/10.1103/PhysRevA.79.032341

    Article  MathSciNet  MATH  Google Scholar 

  14. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99, 140,501 (2007). https://doi.org/10.1103/PhysRevLett.99.140501

    Article  MathSciNet  MATH  Google Scholar 

  15. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.: Security aspects of practical quantum cryptography. In: In Advances in Cryptology? EUROCRYPT’2000, pp. 289–299 (2000)

    Chapter  Google Scholar 

  16. Broome, M.A., Fedrizzi, A., Lanyon, B.P., Kassal, I., Aspuru-Guzik, A., White, A.G.: Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104, 153,602 (2010). https://doi.org/10.1103/PhysRevLett.104.153602

    Article  Google Scholar 

  17. Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum walks driven by many coins. Phys. Rev. A 67, 052,317 (2003). https://doi.org/10.1103/PhysRevA.67.052317

    Article  MathSciNet  Google Scholar 

  18. Bruss, D., Christandl, M., Ekert, A., Englert, B.G., Kaszlikowski, D., Macchiavello, C.: Tomographic quantum cryptography: equivalence of quantum and classical key distillation. Phys. Rev. Lett. 91, 097,901 (2003). https://doi.org/10.1103/PhysRevLett.91.097901

    Article  Google Scholar 

  19. Cardano, F., Massa, F., Qassim, H., Karimi, E., Slussarenko, S., Paparo, D., de Lisio, C., Sciarrino, F., Santamato, E., Boyd, R.W., Marrucci, L.: Quantum walks and wavepacket dynamics on a lattice with twisted photons. Sci. Adv. 1, e1500,087 (2015). https://doi.org/10.1126/sciadv.1500087

    Article  Google Scholar 

  20. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127,902 (2002). https://doi.org/10.1103/PhysRevLett.88.127902

    Article  Google Scholar 

  21. Chau, H.F.: Unconditionally secure key distribution in higher dimensions by depolarization. IEEE Trans. Inf. Theory 51, 1451–1468 (2005). https://doi.org/10.1109/TIT.2005.844076

    Article  MathSciNet  MATH  Google Scholar 

  22. Chau, H.F.: Quantum key distribution using qudits that each encode one bit of raw key. Phys. Rev. A 92, 062,324 (2015). https://doi.org/10.1103/PhysRevA.92.062324

    Article  Google Scholar 

  23. Childs, A., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’03, pp. 59–68. ACM, New York, NY, USA (2003)

  24. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180,501 (2009). https://doi.org/10.1103/PhysRevLett.102.180501

    Article  MathSciNet  Google Scholar 

  25. Childs, A.M., Gosset, D., Webb, Z.: Universal computation by multiparticle quantum walk. Science 339(6121), 791–794 (2013). https://doi.org/10.1126/science.1229957

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Christandl, M., König, R., Renner, R.: Postselection technique for quantum channels with applications to quantum cryptography. Phys. Rev. Lett. 102, 020,504 (2009). https://doi.org/10.1103/PhysRevLett.102.020504

    Article  Google Scholar 

  27. Curty, M., Guhne, O., Lewenstein, M., Lutkenhaus, N.: Detecting two-party quantum correlations in quantum-key-distribution protocols. Phys. Rev. A 71, 022,306 (2005). https://doi.org/10.1103/PhysRevA.71.022306

    Article  Google Scholar 

  28. Curty, M., Lewenstein, M., Lutkenhaus, N.: Entanglement as a precondition for secure quantum key distribution. Phys. Rev. Lett. 92, 217,903 (2004). https://doi.org/10.1103/PhysRevLett.92.217903

    Article  Google Scholar 

  29. Dada, A.C., Leach, J., Buller, G.S., Padgett, M.J., Andersson, E.: Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities. Nat. Phys. 7, 677–680 (2011). https://doi.org/10.1038/nphys1996

    Article  Google Scholar 

  30. Devetak, I., Winter, A.: Distillation of secret key and entanglement from quantum states. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 461(2053), 207–235 (2005). https://doi.org/10.1098/rspa.2004.1372

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Diamanti, E., Lo, H.K., Qi, B., Yuan, Z.: Practical challenges in quantum key distribution. Npj Quantum Inf. 2, 16,025 (2016). https://doi.org/10.1038/npjqi.2016.25

    Article  Google Scholar 

  32. Dixon, A.R., Dynes, J.F., Lucamarini, M., Frhlich, B., Sharpe, A.W., Plews, A., Tam, W., Yuan, Z.L., Tanizawa, Y., Sato, H., Kawamura, S., Fujiwara, M., Sasaki, M., Shields, A.J.: Quantum key distribution with hacking countermeasures and long term field trial. Sci. Rep. 7, 1978 (2017). https://doi.org/10.1038/s41598-017-01884-0

    Article  ADS  Google Scholar 

  33. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Elezov, M., Ozhegov, R., Kurochkin, Y., Goltsman, G., Makarov, V.: Countermeasures against blinding attack on superconducting nanowire detectors for QKD. EPJ Web Conf. 103, 10,002 (2015). https://doi.org/10.1051/epjconf/201510310002

    Article  Google Scholar 

  35. Erhard, M., Malik, M., Krenn, M., Zeilinger, A.: Experimental ghz entanglement beyond qubits. arXiv:1708.03881 (2017)

  36. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998). https://doi.org/10.1103/PhysRevA.58.915

    Article  ADS  MathSciNet  Google Scholar 

  37. Gettrick, M., Miszczak, J.A.: Quantum walks with memory on cycles. Phys. A Stat. Mech. Its Appl. 399, 163–170 (2014). https://doi.org/10.1016/j.physa.2014.01.002

    Article  MathSciNet  MATH  Google Scholar 

  38. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022,320 (2006). https://doi.org/10.1103/PhysRevA.73.022320

    Article  Google Scholar 

  39. Goyal, S.K., Roux, F.S., Forbes, A., Konrad, T.: Implementing quantum walks using orbital angular momentum of classical light. Phys. Rev. Lett. 110, 263,602 (2013). https://doi.org/10.1103/PhysRevLett.110.263602

    Article  Google Scholar 

  40. Goyal, S.K., Roux, F.S., Forbes, A., Konrad, T.: Implementation of multidimensional quantum walks using linear optics and classical light. Phys. Rev. A 92, 040,302 (2015). https://doi.org/10.1103/PhysRevA.92.040302

    Article  MathSciNet  Google Scholar 

  41. Harrington, J.W., Ettinger, J.M., Hughes, R.J., Nordholt, J.E.: Enhancing practical security of quantum key distribution with a few decoy states. arXiv:quant-ph/0503002 (2005)

  42. Hiesmayr, B.C., de Dood, M.J.A., Löffler, W.: Observation of four-photon orbital angular momentum entanglement. Phys. Rev. Lett. 116, 073,601 (2016). https://doi.org/10.1103/PhysRevLett.116.073601

    Article  Google Scholar 

  43. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057,901 (2003). https://doi.org/10.1103/PhysRevLett.91.057901

    Article  Google Scholar 

  44. Islam, N.T., Cahall, C., Aragoneses, A., Lezama, A., Kim, J., Gauthier, D.J.: Robust and stable delay interferometers with application to \(d\)-dimensional time-frequency quantum key distribution. Phys. Rev. Appl. 7, 044,010 (2017). https://doi.org/10.1103/PhysRevApplied.7.044010

    Article  Google Scholar 

  45. Jain, N., Stiller, B., Khan, I., Elser, D., Marquardt, C., Leuchs, G.: Attacks on practical quantum key distribution systems (and how to prevent them). Contemp. Phys. 57(3), 366–387 (2016). https://doi.org/10.1080/00107514.2016.1148333

    Article  ADS  Google Scholar 

  46. Jha, A.K., Malik, M., Boyd, R.W.: Exploring energy-time entanglement using geometric phase. Phys. Rev. Lett. 101, 180,405 (2008). https://doi.org/10.1103/PhysRevLett.101.180405

    Article  Google Scholar 

  47. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003). https://doi.org/10.1080/00107151031000110776

    Article  ADS  Google Scholar 

  48. Knight, P.L., Roldan, E., Sipe, J.E.: Quantum walk on the line as an interference phenomenon. Phys. Rev. A 68, 020,301 (2003). https://doi.org/10.1103/PhysRevA.68.020301

    Article  Google Scholar 

  49. Krawec, W.O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process. 13(11), 2417–2436 (2014). https://doi.org/10.1007/s11128-014-0802-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Krawec, W.O.: History dependent quantum walk on the cycle with an unbalanced coin. Phys. A Stat. Mech. Its Appl. 428, 319–331 (2015). https://doi.org/10.1016/j.physa.2015.02.061

    Article  ADS  MathSciNet  Google Scholar 

  51. Krawec, W.O.: Security proof of a semi-quantum key distribution protocol. In: 2015 IEEE International Symposium on Information Theory (ISIT), pp. 686–690. IEEE (2015)

  52. Krawec, W.O.: Quantum key distribution with mismatched measurements over arbitrary channels. arXiv:1608.07728 (2016)

  53. Krawec, W.O.: Security of a semi-quantum protocol where reflections contribute to the secret key. Quantum Inf. Process. 15(5), 2067–2090 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  54. Krenn, M., Huber, M., Fickler, R., Lapkiewicz, R., Ramelow, S., Zeilinger, A.: Generation and confirmation of a (\(100 \times 100\))-dimensional entangled quantum system. Proc. Natl. Acad. Sci. USA 111, 6243–6247 (2014). https://doi.org/10.1073/pnas.1402365111

    Article  ADS  Google Scholar 

  55. Krenn, M., Malik, M., Fickler, R., Lapkiewicz, R., Zeilinger, A.: Automated search for new quantum experiments. Phys. Rev. Lett. 116, 090,405 (2016). https://doi.org/10.1103/PhysRevLett.116.090405

    Article  Google Scholar 

  56. Kurtsiefer, C., Zarda, P., Mayer, S., Weinfurter, H.: The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks? J. Mod. Opt. 48(13), 2039–2047 (2001). https://doi.org/10.1080/09500340108240905

    Article  ADS  Google Scholar 

  57. Lamas-Linares, A., Kurtsiefer, C.: Breaking a quantum key distribution system through a timing side channel. Opt. Express 15, 9388–9393 (2007). https://doi.org/10.1364/OE.15.009388

    Article  ADS  Google Scholar 

  58. Lavery, M.P.J., Robertson, D.J., Berkhout, G.C.G., Love, G.D., Padgett, M.J., Courtial, J.: Refractive elements for the measurement of the orbital angular momentum of a single photon. Opt. Express 20, 2110–2115 (2012). https://doi.org/10.1364/OE.20.002110

    Article  ADS  Google Scholar 

  59. Lee, M.S., Park, B.K., Woo, M.K., Park, C.H., Kim, Y.S., Han, S.W., Moon, S.: Countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme. Phys. Rev. A 94, 062,321 (2016). https://doi.org/10.1103/PhysRevA.94.062321

    Article  Google Scholar 

  60. Liu, Q., Lamas-Linares, A., Kurtsiefer, C., Skaar, J., Makarov, V., Gerhardt, I.: A universal setup for active control of a single-photon detector. Rev. Sci. Instrum. 85(1), 013,108 (2014). https://doi.org/10.1063/1.4854615

    Article  Google Scholar 

  61. Lizama-Prez, L.A., Lpez, J.M., De Carlos Lpez, E.: Quantum key distribution in the presence of the intercept-resend with faked states attack. Entropy 19(1), 4 (2016). https://doi.org/10.3390/e19010004

    Article  ADS  Google Scholar 

  62. Lo, H.K., Chau, H.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999). https://doi.org/10.1126/science.283.5410.2050. Please check and confirm the inserted publication year is correct for the references [61, 68]

    Article  ADS  Google Scholar 

  63. Lo, H.K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18(2), 133–165 (2005). https://doi.org/10.1007/s00145-004-0142-y

    Article  MathSciNet  MATH  Google Scholar 

  64. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230,504 (2005). https://doi.org/10.1103/PhysRevLett.94.230504

    Article  Google Scholar 

  65. Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81, 042,330 (2010). https://doi.org/10.1103/PhysRevA.81.042330

    Article  MathSciNet  Google Scholar 

  66. Lu, H., Fung, C.H.F., Ma, X., Cai, Q.Y.: Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel. Phys. Rev. A 84, 042,344 (2011). https://doi.org/10.1103/PhysRevA.84.042344

    Article  Google Scholar 

  67. Lucamarini, M., Choi, I., Ward, M.B., Dynes, J.F., Yuan, Z.L., Shields, A.J.: Practical security bounds against the trojan-horse attack in quantum key distribution. Phys. Rev. X 5, 031,030 (2015). https://doi.org/10.1103/PhysRevX.5.031030

    Article  Google Scholar 

  68. Lucamarini, M., Dynes, J.F., Frohlich, B., Yuan, Z., Shields, A.J.: Security bounds for efficient decoy-state quantum key distribution. IEEE J. Sel. Top. Quantum Electron. 21(3), 1–8 (2015). https://doi.org/10.1109/JSTQE.2015.2394774

    Article  Google Scholar 

  69. Lutkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052,304 (2000). https://doi.org/10.1103/PhysRevA.61.052304

    Article  Google Scholar 

  70. Lutkenhaus, N., Jahma, M.: Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys. 4(1), 44 (2002)

    Article  ADS  Google Scholar 

  71. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4, 686 (2010). https://doi.org/10.1038/nphoton.2010.214

    Article  ADS  Google Scholar 

  72. Ma, X., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012,326 (2005). https://doi.org/10.1103/PhysRevA.72.012326

    Article  Google Scholar 

  73. Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 022,313 (2006). https://doi.org/10.1103/PhysRevA.74.022313

    Article  Google Scholar 

  74. Malik, M., Erhard, M., Huber, M., Krenn, M., Fickler, R., Zeilinger, A.: Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248–252 (2016). https://doi.org/10.1038/nphoton.2016.12

    Article  ADS  Google Scholar 

  75. Manouchehri, K., Wang, J.: Physical Implementation of Quantum Walks. Springer Publishing Company, Incorporated, New York (2013)

    MATH  Google Scholar 

  76. Martin, A., Guerreiro, T., Tiranov, A., Designolle, S., Frowis, F., Brunner, N., Huber, M., Gisin, N.: Quantifying photonic high-dimensional entanglement. Phys. Rev. Lett. 118, 110,501 (2017). https://doi.org/10.1103/PhysRevLett.118.110501

    Article  Google Scholar 

  77. McGettrick, M.: One dimensional quantum walks with memory. Quantum Inf. Comput. 10(5), 509–524 (2010)

    MathSciNet  MATH  Google Scholar 

  78. Mirhosseini, M., Malik, M., Shi, Z., Boyd, R.W.: Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun. 4, 2781 (2013). https://doi.org/10.1038/ncomms3781

    Article  ADS  Google Scholar 

  79. Nikolopoulos, G.: Applications of single-qubit rotations in quantum public-key cryptography. Phys. Rev. A 77, 032,348 (2008). https://doi.org/10.1103/PhysRevA.77.032348

    Article  MathSciNet  MATH  Google Scholar 

  80. Nikolopoulos, G.M., Alber, G.: Security bound of two-basis quantum-key-distribution protocols using qudits. Phys. Rev. A 72, 032,320 (2005). https://doi.org/10.1103/PhysRevA.72.032320

    Article  Google Scholar 

  81. Nikolopoulos, G.M., Ranade, K.S., Alber, G.: Error tolerance of two-basis quantum-key-distribution protocols using qudits and two-way classical communication. Phys. Rev. A 73, 032,325 (2006). https://doi.org/10.1103/PhysRevA.73.032325

    Article  Google Scholar 

  82. Portugal, R.: Quantum Walks and Search Algorithms. Quantum Science and Technology. Springer, New York, NY (2013). https://doi.org/10.1007/978-1-4614-6336-8

    Book  MATH  Google Scholar 

  83. Pugh, C.J., Kaiser, S., Bourgoin, J.P., Jin, J., Sultana, N., Agne, S., Anisimova, E., Makarov, V., Choi, E., Higgins, B.L., Jennewein, T.: Airborne demonstration of a quantum key distribution receiver payload. Quantum Sci. Technol. 2, 024,009 (2017). https://doi.org/10.1088/2058-9565/aa701f

    Article  Google Scholar 

  84. Qi, B., Fung, C.H.F., Lo, H.K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73–82 (2007). https://doi.org/10.1103/PhysRevX.5.031030

    Article  MathSciNet  MATH  Google Scholar 

  85. Quantique, I.: Quantum key distribution record (2017). https://www.idquantique.com/clavis3-quantum-key-distribution-platform/. Accessed 12 Sept 2018

  86. Renner, R.: Symmetry of large physical systems implies independence of subsystems. Nat. Phys. 3, 645–649 (2007). https://doi.org/10.1038/nphys684

    Article  Google Scholar 

  87. Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012,332 (2005). https://doi.org/10.1103/PhysRevA.72.012332

    Article  Google Scholar 

  88. Rohde, P.P., Brennen, G.K., Gilchrist, A.: Quantum walks with memory provided by recycled coins and a memory of the coin-flip history. Phys. Rev. A 87, 052,302 (2013). https://doi.org/10.1103/PhysRevA.87.052302

    Article  Google Scholar 

  89. Rohde, P.P., Fitzsimons, J.F., Gilchrist, A.: Quantum walks with encrypted data. Phys. Rev. Lett. 109(15), 150,501 (2012)

    Article  Google Scholar 

  90. Roldan, E., Soriano, J.C.: Optical implementability of the two-dimensional quantum walk. J. Mod. Opt. 52, 2649–2657 (2006). https://doi.org/10.1080/09500340500309873

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Rosenberg, D., Peterson, C.G., Harrington, J.W., Rice, P.R., Dallmann, N., Tyagi, K.T., McCabe, K.P., Nam, S., Baek, B., Hadfield, R.H., Hughes, R.J., Nordholt, J.E.: Practical long-distance quantum key distribution system using decoy levels. New J. Phys. 11(4), 045,009 (2009)

    Article  Google Scholar 

  92. Sajeed, S., Minshull, C., Jain, N., Makarov, V.: Invisible Trojan-horse attack. Sci. Rep. 7, 8403 (2017). https://doi.org/10.1038/s41598-017-08279-1

    Article  ADS  Google Scholar 

  93. Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R.: Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010,502 (2012). https://doi.org/10.1103/PhysRevLett.108.010502

    Article  Google Scholar 

  94. Santha, M.: Quantum walk based search algorithms. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) Theory and Applications of Models of Computation, Lecture Notes in Computer Science, vol. 4978, pp. 31–46. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-79228-4-3

    Chapter  Google Scholar 

  95. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N., Dušek, M., Lutkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009). https://doi.org/10.1103/RevModPhys.81.1301

    Article  ADS  Google Scholar 

  96. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009). https://doi.org/10.1103/RevModPhys.81.1301

    Article  ADS  Google Scholar 

  97. Schreiber, A., Cassemiro, K.N., Potocek, V., Gabris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050,502 (2010). https://doi.org/10.1103/PhysRevLett.104.050502

    Article  Google Scholar 

  98. Schreiber, A., Gabris, A., Rohde, P.P., Laiho, K., Stefanak, M., Potocek, V., Hamilton, C., Jex, I., Silberhorn, C.: A 2D quantum walk simulation of two-particle dynamics. Science 336, 55–58 (2012). https://doi.org/10.1126/science.1218448

    Article  ADS  Google Scholar 

  99. Seyfarth, U., Nikolopoulos, G., Alber, G.: Symmetries and security of a quantum-public-key encryption based on single-qubit rotations. Phys. Rev. A 85(2), 022,342 (2012)

    Article  Google Scholar 

  100. Sheridan, L., Scarani, V.: Security proof for quantum key distribution using qudit systems. Phys. Rev. A 82, 030,301 (2010). https://doi.org/10.1103/PhysRevA.82.030301

    Article  Google Scholar 

  101. Stipcević, M.: Preventing detector blinding attack and other random number generator attacks on quantum cryptography by use of an explicit random number generator. arXiv:1403.0143 (2014)

  102. Takesue, H., Sasaki, T., Tamaki, K., Koashi, M.: Experimental quantum key distribution without monitoring signal disturbance. Nat. Photon. 9, 827–831 (2015). https://doi.org/10.1038/nphoton.2015.173

    Article  ADS  Google Scholar 

  103. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Omer, B., Furst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007). https://doi.org/10.1038/nphys629

    Article  Google Scholar 

  104. Vakhitov, A., Makarov, V., Hjelme, D.R.: Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. J. Mod. Opt. 48(13), 2023–2038 (2001). https://doi.org/10.1080/09500340108240904

    Article  ADS  MATH  Google Scholar 

  105. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012). https://doi.org/10.1007/s11128-012-0432-5

    Article  MathSciNet  MATH  Google Scholar 

  106. Vlachou, C., Rodrigues, J., Mateus, P., Paunković, N., Souto, A.: Quantum walk public-key cryptographic system. Int. J. Quantum Inf. 13(07), 1550,050 (2015)

    Article  MathSciNet  Google Scholar 

  107. Wang, F., Erhard, M., Babazadeh, A., Malik, M., Krenn, M., Zeilinger, A.: Generation of the complete four-dimensional bell basis. Optica 4, 1462–1467 (2017). https://doi.org/10.1364/OPTICA.4.001462

    Article  Google Scholar 

  108. Wang, J., Wang, H., Qin, X., Wei, Z., Zhang, Z.: The countermeasures against the blinding attack in quantum key distribution. Eur. Phys. J. D 70(1), 5 (2016). https://doi.org/10.1140/epjd/e2015-60469-8

    Article  ADS  Google Scholar 

  109. Wang, Q., Wang, X.B., Bjrk, G., Karlsson, A.: Improved practical decoy state method in quantum key distribution with parametric down-conversion source. EPL Europhys. Lett. 79(4), 40,001 (2007)

    Article  MathSciNet  Google Scholar 

  110. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230,503 (2005). https://doi.org/10.1103/PhysRevLett.94.230503

    Article  Google Scholar 

  111. Wang, X.B.: Decoy-state protocol for quantum cryptography with four different intensities of coherent light. Phys. Rev. A 72, 012,322 (2005). https://doi.org/10.1103/PhysRevA.72.012322

    Article  Google Scholar 

  112. Wiechers, C., Lydersen, L., Wittmann, C., Elser, D., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G.: After-gate attack on a quantum cryptosystem. New J. Phys. 13(1), 013043 (2011)

    Article  ADS  Google Scholar 

  113. Woodhead, E., Pironio, S.: Secrecy in prepare-and-measure clauser-horne-shimony-holt tests with a qubit bound. Phys. Rev. Lett. 115, 150,501 (2015). https://doi.org/10.1103/PhysRevLett.115.150501

    Article  Google Scholar 

  114. Xu, G., Chen, X.B., Dou, Z., Yang, Y.X., Li, Z.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14(8), 2959–2980 (2015). https://doi.org/10.1007/s11128-015-1021-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  115. Yao, A.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science, 1986., pp. 162–167. IEEE (1986)

  116. Yin, J., Cao, Y., Li, Y.H., Liao, S.K., Zhang, L., Ren, J.G., Cai, W.Q., Liu, W.Y., Li, B., Dai, H., Li, G.B., Lu, Q.M., Gong, Y.H., Xu, Y., Li, S.L., Li, F.Z., Yin, Y.Y., Jiang, Z.Q., Li, M., Jia, J.J., Ren, G., He, D., Zhou, Y.L., Zhang, X.X., Wang, N., Chang, X., Zhu, Z.C., Liu, N.L., Chen, Y.A., Lu, C.Y., Shu, R., Peng, C.Z., Wang, J.Y., Pan, J.W.: Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017). https://doi.org/10.1126/science.aan3211

    Article  Google Scholar 

  117. Zhang, W., Qiu, D., Mateus, P.: Security of a single-state semi-quantum key distribution protocol. arXiv:1612.03170 (2016)

  118. Zhao, Y., Fung, C.H.F., Qi, B., Chen, C., Lo, H.K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78, 042,333 (2008). https://doi.org/10.1103/PhysRevA.78.042333

    Article  Google Scholar 

  119. Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79, 052,312 (2009). https://doi.org/10.1103/PhysRevA.79.052312

    Article  Google Scholar 

Download references

Acknowledgements

WK would like to acknowledge the hospitality of SQIG–Security and Quantum Information Group in IT—Instituto de Telecomunicações, in Lisbon, during his visit while working on this project. CV acknowledges the support from DP-PMI and FCT (Portugal) through the Grant PD/BD/ 52652/2014. CV, PM, NP and AS acknowledge the support of SQIG-Security and Quantum Information Group. PM, NP and AS also acknowledge the support from UID/EEA/50008/2013 and the support of the project QuantumMining POCI-01-0145-FEDER-031826 funded by FCT. NP acknowledges the IT project QbigD funded by FCT PEst-OE/ EEI/LA0008/2013. PM and AS acknowledges the FCT project Confident PTDC/EEI-CTP/4503/2014. A.S. also acknowledges the support of LASIGE Research Unit, ref. UID/CEC/00408/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Souto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlachou, C., Krawec, W., Mateus, P. et al. Quantum key distribution with quantum walks. Quantum Inf Process 17, 288 (2018). https://doi.org/10.1007/s11128-018-2055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2055-y

Keywords

Navigation