Advertisement

An efficient quantum digital signature for classical messages

  • Ming-Qiang WangEmail author
  • Xue Wang
  • Tao Zhan
Article

Abstract

Quantum digital signature offers an information theoretically secure way to guarantee the identity of the sender and the integrity of classical messages between one sender and many recipients. The existing unconditionally secure protocols only deal with the problem of sending single-bit messages. In this paper, we modify the model of quantum digital signature protocol and construct an unconditionally secure quantum digital signature protocol which can sign multi-bit messages at one time. Our protocol is against existing quantum attacks. Compared with the previous protocols, our protocol requires less quantum memory and becomes much more efficient. Our construction makes it possible to have a quantum signature in actual application.

Keywords

Quantum digital signature Quantum commitment Photodetection event 

References

  1. 1.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)MathSciNetCrossRefGoogle Scholar
  2. 2.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gottesman, D., Chuang, I.: Quantum digital signatures. Quantum Phys., Preprint at arXiv:quant-ph/0105032 (2001)
  4. 4.
    Clarke, P.J., Collins, R.J., Dunjko, V., Andersson, E., Jeffers, J., Buller, G.S.: Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nat. Commun. 3(6), 1174 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Wang, T.Y., Cai, X.Q., Ren, Y.L., Zhang, R.L.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)CrossRefGoogle Scholar
  6. 6.
    Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bells theorem, quantum theory, and conceptions of universe. Physics 58, 1131 (1990)zbMATHGoogle Scholar
  7. 7.
    Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 042325 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Luo, M.X., Chen, X.B., Yun, D., Yang, Y.X.: Quantum signature scheme with weak arbitrator. Int. J. Theor. Phys. 51, 2135–2142 (2012)CrossRefGoogle Scholar
  12. 12.
    Zou, X., Qiu, D., Yu, F., Mateus, P.: Security problems in the quantum signature scheme with a weak arbitrator. Int. J. Theor. Phys. 53(2), 603–611 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Andersson, E., Curty, M., Jex, I.: Experimentally realiable quantum comparison of coherent states and its applications. Phys. Rev. A 74(2), 022304-1–022304-11 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112(4), 040502 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secture quantum signatures using insecure quantum channels. Phys. Rev. A 93(3), 032325 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Unruh, D.: Computationally binding quantum commitments. In: Advances in Cryptology-EUROCRYPT 2016, LNCS 9666, pages, pp. 497–527, Springer (2016)Google Scholar
  18. 18.
    Wang, M.Q., Wang, X., Zhan, T.: Unconditionally secure multi-party quantum commitment scheme. Quantum Inf. Process. 17(2), 31 (2018)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, School of MathematicsShandong UniversityJinanChina

Personalised recommendations