# An efficient quantum digital signature for classical messages

- 167 Downloads
- 1 Citations

## Abstract

Quantum digital signature offers an information theoretically secure way to guarantee the identity of the sender and the integrity of classical messages between one sender and many recipients. The existing unconditionally secure protocols only deal with the problem of sending single-bit messages. In this paper, we modify the model of quantum digital signature protocol and construct an unconditionally secure quantum digital signature protocol which can sign multi-bit messages at one time. Our protocol is against existing quantum attacks. Compared with the previous protocols, our protocol requires less quantum memory and becomes much more efficient. Our construction makes it possible to have a quantum signature in actual application.

## Keywords

Quantum digital signature Quantum commitment Photodetection event## References

- 1.Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM
**21**, 120–126 (1978)MathSciNetCrossRefGoogle Scholar - 2.ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory
**31**, 469–472 (1985)MathSciNetCrossRefGoogle Scholar - 3.Gottesman, D., Chuang, I.: Quantum digital signatures. Quantum Phys., Preprint at arXiv:quant-ph/0105032 (2001)
- 4.Clarke, P.J., Collins, R.J., Dunjko, V., Andersson, E., Jeffers, J., Buller, G.S.: Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nat. Commun.
**3**(6), 1174 (2012)ADSCrossRefGoogle Scholar - 5.Wang, T.Y., Cai, X.Q., Ren, Y.L., Zhang, R.L.: Security of quantum digital signatures for classical messages. Sci. Rep.
**5**, 9231 (2015)CrossRefGoogle Scholar - 6.Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bells theorem, quantum theory, and conceptions of universe. Physics
**58**, 1131 (1990)zbMATHGoogle Scholar - 7.Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A
**67**, 042317 (2003)ADSCrossRefGoogle Scholar - 8.Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A
**65**, 042312 (2002)ADSCrossRefGoogle Scholar - 9.Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A
**79**, 054307 (2009)ADSMathSciNetCrossRefGoogle Scholar - 10.Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A
**82**(4), 042325 (2010)ADSCrossRefGoogle Scholar - 11.Luo, M.X., Chen, X.B., Yun, D., Yang, Y.X.: Quantum signature scheme with weak arbitrator. Int. J. Theor. Phys.
**51**, 2135–2142 (2012)CrossRefGoogle Scholar - 12.Zou, X., Qiu, D., Yu, F., Mateus, P.: Security problems in the quantum signature scheme with a weak arbitrator. Int. J. Theor. Phys.
**53**(2), 603–611 (2014)MathSciNetCrossRefGoogle Scholar - 13.Andersson, E., Curty, M., Jex, I.: Experimentally realiable quantum comparison of coherent states and its applications. Phys. Rev. A
**74**(2), 022304-1–022304-11 (2006)ADSCrossRefGoogle Scholar - 14.Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett.
**112**(4), 040502 (2014)ADSCrossRefGoogle Scholar - 15.Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secture quantum signatures using insecure quantum channels. Phys. Rev. A
**93**(3), 032325 (2016)ADSCrossRefGoogle Scholar - 16.Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc.
**58**(301), 13–30 (1963)MathSciNetCrossRefGoogle Scholar - 17.Unruh, D.: Computationally binding quantum commitments. In: Advances in Cryptology-EUROCRYPT 2016, LNCS 9666, pages, pp. 497–527, Springer (2016)Google Scholar
- 18.Wang, M.Q., Wang, X., Zhan, T.: Unconditionally secure multi-party quantum commitment scheme. Quantum Inf. Process.
**17**(2), 31 (2018)ADSMathSciNetCrossRefGoogle Scholar