The randomness in 2\(\rightarrow \)1 quantum random access code without a shared reference frame

  • S.-J. QinEmail author
  • Y.-K. Wang
  • R.-Z. Li
  • F. Gao
  • Q.-Y. Wen


The non-classical correlations presented in quantum random access code experiment are a powerful diagnostic tool for semi-device-independent random number generator protocols. The idea behind it is that if the user observes the optimal non-classical correlations, he has the guarantee that the unknown quantum states and measurements in the devices have carefully calibrated (we say have global reference frame), in a relationship which can bring to random outcomes. This means, for observing the non-classical correlations, the devices must have that calibration in previous. However, that calibration can’t always be guaranteed in reality due to unintentional flaws or failures of the quantum apparatuses, thus the devices do not always occur the wanted non-classical correlations. In this paper, we show there will always have non-classical correlations by the proper operations, when the devices have local reference. The quantity of true randomness in the observed non-classical correlations is then quantified by the violation values of some inequality. Besides we also consider the devices without local reference and show the probability of non-classical correlations occurring in 100 trials.


Non-classical correlation Randomness Reference frame 



This work is supported by National Natural Science Foundation of China (Grant Nos. 61672110 and 61671082).


  1. 1.
    Brunner, N., Pironio, S., Acín, A.: Testing the dimension of Hilbert spaces. Phys. Rev. Lett. 100, 210503 (2008)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Wehner, S., Christandl, M., Doherty, A.C.: Lower bound on the dimension of a quantum system given measured data. Phys. Rev. A 78, 062112 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Ambainis, A., Nayak, A., Ta-Shma, A.: Dense quantum coding and quantum finite automata. J. ACM 49, 496–511 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ambainis, A., Leung, D., Mancinska, L., et al.: Quantum random access codes with shared randomness. arXiv: 0810.2937 (2008)
  5. 5.
    Hayashi, M., Iwama, K., Nishimura, H.: (4, 1) Quantum random access coding does not exist-one qubit is not enough to recover one of four bits. N. J. Phys. 8, 129 (2006)CrossRefGoogle Scholar
  6. 6.
    Chaturvedi, A., Pawłowski, M., Horodecki, K.: Random access codes and nonlocal resources. Phys. Rev. A 96(2), 022125 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Pawłowski, M., Źukowski, M.: Entanglement-assisted random access codes. Phys. Rev. A 81, 042326 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Dall’Arno, M., Passaro, E., Gallego, R., Acín, A.: Robustness of device-independent dimension witnesses. Phys. Rev. A 86(4), 042312 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Gallego, R., Brunner, N., Hadley, C., Acín, A.: Device-independent tests of classical and quantum dimensions. Phys. Rev. Lett. 105(23), 230501 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Li, H.W., Yin, Z.Q., Wu, Y.C., et al.: Semi-device-independent random-number expansion without entanglement. Phys. Rev. A 84, 034301 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Mironowicz, P., Li, H.W., Pawłowski, M.: Properties of dimension witnesses and their semidefinite programming relaxations. Phys. Rev. A 90, 022322 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Li, H.W., Pawłowski, M., Yin, Z.Q., et al.: Semi-device-independent randomness certification using n\(\rightarrow \)1 quantum random access codes. Phys. Rev. A 85, 052308 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, Y.K., Qin, S.J., Song, T.T., et al.: Effects of relaxed assumptions on semi-device-independent randomness expansion. Phys. Rev. A 89, 032312 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Wang, Y.K., Qin, S.J., Wu, X., Gao, F., Wen, Q.Y.: Reduced gap between observed and certified randomness for semi-device-independent protocols. Phys. Rev. A 92, 052321 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Li, H.W., Mironowicz, P., Pawłowski, M., et al.: Relationship between semi-and fully-device-independent protocols. Phys. Rev. A 87, 020302 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555 (2007)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Costa, F., Harrigan, N., Rudolph, T., Brukner, C.: Entanglement detection with bounded reference frames. N. J. Phys. 11(12), 123007 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Shadbolt, P., et al.: Guaranteed violation of a Bell inequality without aligned reference frames or calibrated devices. Sci. Rep. 2, 470 (2012)CrossRefGoogle Scholar
  19. 19.
    Mayers, D., Yao, A.C.C.: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, pp. 503–509 (1998)Google Scholar
  20. 20.
    Clauser, J.F., Horne, M.A., Shimony, A., et al.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880884 (1969)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S.-J. Qin
    • 1
    • 2
    Email author
  • Y.-K. Wang
    • 1
  • R.-Z. Li
    • 1
  • F. Gao
    • 1
  • Q.-Y. Wen
    • 1
  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.State Key Laboratory of CryptologyBeijingChina

Personalised recommendations