Advertisement

One-step distillation of local-unitary-equivalent GHZ-type states

  • Jibing Yuan
  • Shiqing Tang
  • Xinwen WangEmail author
  • Dengyu Zhang
Article
  • 89 Downloads

Abstract

Entanglement distillation plays a very important role in quantum information science. Distillation of high-purity Greenberger–Horne–Zeilinger (GHZ) states has been widely studied. We here show that a pure GHZ-type entangled state or its local unitary (LU)-equivalent state could be extracted from two copies of a particular multipartite mixed state (e.g., an X state) in a single step. Such one-step distillation schemes for LU-equivalent states are expected to shed light on mixed-state manipulation and purification, as well as establish a link between entanglement classification and distillation.

Keywords

One-step distillation GHZ-type states Local unitary equivalence X states 

Notes

Acknowledgements

This work was supported by the NSFC (Gant No. 11647129), the Scientific Research Fund of Hunan Provincial Education Department (Grant Nos. 15A028 and 16B036), the HNNSF (Grant Nos. 2016JJ2009 and 2017JJ3005), the Science and Technology Plan Project of Hunan Province (2016TP1020), Open Fund Project of Hunan Provincial Key Laboratory of Intelligent Information Processing and Application for Hengyang Normal University (IIPA18K07), and Opening Fund of Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education (QSQC1702).

References

  1. 1.
    Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Żukowsk, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Pal, R., Bandyopadhyay, S., Ghosh, S.: Entanglement sharing through noisy qubit channels: one-shot optimal singlet fraction. Phys. Rev. A 90, 052304 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Wallnöfer, J., Dür, W.: Measurement-based quantum communication with resource states generated by entanglement purification. Phys. Rev. A 95, 012303 (2017)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Leditzky, F., Datta, N., Smith, G.: Useful states and entanglement distillation. arXiv preprint: arXiv:1701.03081 (2017)
  8. 8.
    Chitambar, E., Hsieh, M.H.: Relating the resource theories of entanglement and quantum coherence. Phys. Rev. Lett. 117, 020402 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Tan, X., Zhang, X.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15, 2137–2154 (2016)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, X.W., Yang, G.J., Su, Y.H., Xie, M.: Simple schemes for quantum information processing with W-type entanglement. Quantum Inf. Process. 8, 431–442 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, X.W., Zhang, D.Y., Yang, G.J., Tang, S.Q., Xie, L.J.: Remote information concentration and multipartite entanglement in multilevel systems. Phys. Rev. A 84, 042310 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Sheng, Y.B., Zhou, L., Long, G.L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Meng, F.X., Yu, X.T., Zhang, Z.C.: An economical state-dependent telecloning for a multiparticle GHZ state. Quantum Inf. Process. 17, 66 (2018)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Murao, M., Plenio, M.B., Popescu, S., Vedral, V., Knight, P.L.: Multiparticle entanglement purification protocols. Phys. Rev. A 57, R4075–4078 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Aschauer, H., Dür, W., Briegel, H.J.: Multiparticle entanglement purification for two-colorable graph states. Phys. Rev. A 71, 012319 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Chen, K., Lo, H.K.: Multi-partite quantum cryptographic protocols with noisy GHZ states. Quantum Inf. Comput. 7, 689–715 (2007)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Huber, M., Plesch, M.: Purification of genuine multipartite entanglement. Phys. Rev. A 83, 062321 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Das, T., Kumar, A., Pal, A.K., Shukla, N., Sen(De), A., Sen, U.: Canonical distillation of entanglement. Phys. Lett. A 381, 3529–3535 (2017)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Ruan, L., Dai, W., Win, M.Z.: Adaptive recurrence quantum entanglement distillation for two-Kraus-operator channels. arXiv preprint: arXiv:1706.07461 (2017)
  23. 23.
    Fang, K., Wang, X., Tomamichel, M., Duan, R.: Non-asymptotic entanglement distillation. arXiv preprint arXiv:1706.06221 (2017)
  24. 24.
    Krastanov, S., Albert, V.V., Jiang, L.: Optimized entanglement purification. arXiv preprint arXiv:1712.09762 (2017)
  25. 25.
    Baghbanzadeh, S., Rezakhani, A.T.: Distillation of free entanglement from bound entangled states using weak measurements. Phys. Rev. A 88, 062320 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Carle, T., Kraus, B., Dür, W., de Vicente, J.I.: Purification to locally maximally entangleable states. Phys. Rev. A 87, 012328 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Chen, P.X., Liang, L.M., Li, C.Z., Huang, M.Q.: Necessary and sufficient condition for distillability with unit fidelity from finite copies of a mixed state: the most efficient purification protocol. Phys. Rev. A 66, 022309 (2002)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Chen, P.X., Li, C.Z.: Distilling multipartite pure states from a finite number of copies of multipartite mixed states. Phys. Rev. A 69, 012308 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Czechlewski, M., Grudka, A., Ishizaka, S., Wójcik, A.: Entanglement purification protocol for a mixture of a pure entangled state and a pure product state. Phys. Rev. A 80, 014303 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Wang, X.W., Tang, S.Q., Yuan, J.B., Zhang, D.Y.: Distilling perfect GHZ states from two copies of non-GHZ-diagonal mixed states. Opt. Commun. 392, 185–189 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Kraus, B.: Local unitary equivalence and entanglement of multipartite pure states. Phys. Rev. A 82, 032121 (2010)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Liu, B., Li, J.L., Li, X., Qiao, C.F.: Local unitary classification of arbitrary dimensional multipartite pure states. Phys. Rev. Lett. 108, 050501 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bells theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    Yu, Y.F., Feng, J., Zhan, M.S.: Remote information concentration by a Greenberger–Horne–Zeilinger state and by a bound entangled state. Phys. Rev. A 68, 024303 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    Cunha, M.M., Fonseca, E.A., Moreno, M.G.M., Parisio, F.: Non-ideal teleportation of tripartite entanglement: Einstein–Podolsky–Rosen versus Greenberger–Horne–Zeilinger schemes. Quantum Inf. Process. 16, 254 (2017)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Joy, D., Surendran, S.P., Sabir, M.: Efficient deterministic secure quantum communication protocols using multipartite entangled states. Quantum Inf. Process. 16, 157 (2017)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhang, W., Qiu, D., Zou, X., Mateus, P.: Analyses and improvement of a broadcasting multiple blind signature scheme based on quantum GHZ entanglement. Quantum Inf. Process. 16, 150 (2017)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Martins, A.M.: Necessary and sufficient conditions for local unitary equivalence of multiqubit states. Phys. Rev. A 91, 042308 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459 (2007)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Hashemi Rafsanjani, S.M., Huber, M., Broadbent, C.J., Eberly, J.H.: Genuinely multipartite concurrence of N-qubit X matrices. Phys. Rev. A 86, 062303 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    Qu, C.C., Zhou, L., Sheng, Y.B.: Entanglement concentration for concatenated Greenberger–Horne–Zeilinger state. Quantum Inf. Process. 14, 4131–4146 (2015)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Shukla, C., Banerjee, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states. Quantum Inf. Process. 14, 2077–2099 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    Pan, J., Zhou, L., Gu, S.P., Wang, X.F., Sheng, Y.B., Wang, Q.: Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity. Quantum Inf. Process. 15, 1669–1687 (2016)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  49. 49.
    Wang, X.W., Yu, S., Zhang, D.Y., Oh, C.H.: Effect of weak measurement on entanglement distribution over noisy channels. Sci. Rep. 6, 22408 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jibing Yuan
    • 1
  • Shiqing Tang
    • 1
  • Xinwen Wang
    • 1
    • 2
    Email author
  • Dengyu Zhang
    • 1
  1. 1.College of Physics and Electronic Engineering, and Hunan Provincial Key Laboratory of Intelligent Information Processing and ApplicationHengyang Normal UniversityHengyangChina
  2. 2.Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of EducationHunan Normal UniversityChangshaChina

Personalised recommendations