Advertisement

Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution

  • Hua-Jian Ding
  • Chen-Chen Mao
  • Chun-Mei Zhang
  • Qin Wang
Article
  • 82 Downloads

Abstract

Measurement-device-independent quantum key distribution (MDI-QKD) is a promising protocol for realizing long-distance secret keys sharing. However, its key rate is relatively low when the finite-size effect is taken into account. In this paper, we consider statistical fluctuation analysis for the three-intensity decoy-state MDI-QKD system based on the recent work (Zhang et al. in Phys Rev A 95:012333, 2017) and further compare its performance with that of applying the Gaussian approximation technique and the Chernoff bound method. The numerical simulations demonstrate that the new method has apparent enhancement both in key generation rate and transmission distance than using Chernoff bound method. Meanwhile, the present work still shows much higher security than Gaussian approximation analysis.

Keywords

Quantum key distribution Statistical fluctuation analysis Decoy state 

Notes

Acknowledgements

We appreciate enlightened discussion and kind assistance in mathematical simulations from Mr. X. Y. Zhou and C. H. Zhang. We also gratefully acknowledge the financial support from the National Key Research and Development Program of China through Grant No. 2017YFA0304100, the National Natural Science Foundation of China through Grants Nos. 61475197, 61590932, 11774180, 61705110, the Natural Science Foundation of the Jiangsu Higher Education Institutions through Grant Nos. 15KJA120002, 17KJB140016, the Outstanding Youth Project of Jiangsu Province through Grant No. BK20150039 and the Natural Science Foundation of Jiangsu Province through Grant No. BK20170902.

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1999)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351–406 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325–360 (2004)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Brassard, G., Lutkenhaus, N., Mor, T., et al.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Lutkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 5, 052304 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Fung, C.H.F., Qi, B., Tamaki, K., Lo, H.K.: Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A 75, 032314 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Xu, F.H., Qi, B., Lo, H.K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12, 113026 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Qi, B., Fung, C.H.F., Lo, H.K., et al.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73–82 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Zhao, Y., Fung, C.H.F., Qi, B.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78, 042333 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Makarov, V., Hjelme, D.R.: Faked states attack on quantum cryptosystems. J. Mod. Opt. 52, 691–705 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 022313 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Acin, A., Massar, S., Pironio, S.: Efficient quantum key distribution secure against no-signalling eavesdroppers. New J. Phys. 8, 126 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Acin, A., Brunner, N., Gisin, N., et al.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Wang, X.B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, Q., Wang, X.B.: Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 88, 052332 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Tamaki, K., Lo, H.K., Fung, C.H.F., et al.: Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85, 42307 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Ferreira da Silva, T., Vitoreti, D., Xavier, G.B., et al.: Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88, 052303 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Chen, D., Zhao, S.H., Shi, L., Liu, Y.: Measurement-device-independent quantum key distribution with pairs of vector vortex beams. Phys. Rev. A 93, 032320 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Liu, Y., Chen, T.Y., Wang, L.J.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111, 130502 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Wang, C., Song, X.T., Yin, Z.Q.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115, 160502 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Yin, H.L., Chen, T.Y., Yu, Z.W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Wang, C., Yin, Z.Q., Wang, S., et al.: Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica 4, 1016 (2017)CrossRefGoogle Scholar
  30. 30.
    Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Wei, J.H., Dai, H.Y., Zhang, M.: Two efficient schemes for probabilistic remote state preparation and the combination of both schemes. Quantum Inf. Process. 13, 2115–2125 (2014)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Wei, J.H., Shi, L., et al.: Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quantum Inf. Process. 16, 2601–2612 (2016)MathSciNetGoogle Scholar
  33. 33.
    Lim, C.C.W., Curty, M., Walenta, N., Xu, F.H., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Curty, M., Xu, F.H., Cui, W., et al.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)CrossRefGoogle Scholar
  35. 35.
    Yu, Z.W., Zhou, Y.H., Wang, X.B.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method. Phys. Rev. A 91, 032318 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Zhang, Z., Zhao, Q., Razavi, M., et al.: Improved key-rate bounds for practical decoy-state quantum-key-distribution systems. Phys. Rev. A 95, 012333 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    Ma, X.F., Fung, C.H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 052305 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23, 493 (1952)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Jiang, C., Yu, Z.W., Wang, X.B.: Measurement-device-independent quantum key distribution with source state errors and statistical fluctuation. Phys. Rev. A 95, 032325 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    Wang, Q., Wang, X.B.: Simulating of the measurement-device independent quantum key distribution with phase randomized general sources. Sci. Rep. 4, 4612 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Xu, F.H., Xu, H., Lo, H.K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hua-Jian Ding
    • 1
    • 2
  • Chen-Chen Mao
    • 1
    • 2
  • Chun-Mei Zhang
    • 1
    • 2
  • Qin Wang
    • 1
    • 2
  1. 1.Institute of Quantum Information and TechnologyNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.Key Lab of Broadband Wireless Communication and Sensor Network TechnologyNanjing University of Posts and Telecommunications, Ministry of EducationNanjingChina

Personalised recommendations