Advertisement

Quantum Information Processing

, 17:243 | Cite as

On four-photon entanglement from parametric down-conversion process

  • Dong Ding
  • Ying-Qiu He
  • Feng-Li Yan
  • Ting Gao
Article

Abstract

We propose a scheme to generate a family of four-photon polarization-entangled states from the second-order emission of the spontaneous parametric down-conversion (PDC) process. Based on linear optical elements and the coincidence detection, the four indistinguishable photons emitted from PDC source result in the family of states which are so different from the previous. By tuning the orientation of wave plate, we are able to obtain the well-known four-photon Greenberger–Horne–Zeilinger (GHZ) state, superposition of two (three) orthogonal GHZ states and generic superposition of four orthogonal GHZ states. As an application, we analyze quantum nonlocality for the present superposition states. Under particular phase settings, we calculate the local hidden variable (LHV) correlation and the quantum correlation function. As a result, the Bell inequality derived from the LHV correlation is completely violated by these four-photon entangled states. The maximal quantum violation occurs naturally with the four-photon GHZ state, and there exist the quantum violations which are larger than previously reported values over a surprisingly wide range. It means that the present four-photon entangled states are therefore suitable for testing the LHV theory.

Keywords

Multiphoton entanglement Parametric down-conversion process Quantum nonlocality 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos: 11475054, 11371005, 11547169, 61472137, Hebei Natural Science Foundation of China under Grant Nos: A2016205145, A2018205125, the Fundamental Research Funds for the Central Universities of Ministry of Education of China under Grant Nos: 3142017069, 3142015044, the Foundation for High-Level Talents of Chengde Medical University under Grant No: 201701, the Research Project of Science and Technology in Higher Education of Hebei Province of China under Grant Nos: Z2015188, QN2014330.

References

  1. 1.
    Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(1), 135–174 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Żkowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84(2), 777–838 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Bouwmeester, D., Pan, J.W., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 82(7), 1345–1349 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Pan, J.W., Daniell, M., Gasparoni, S., Weihs, G., Zeilinger, A.: Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86(20), 4435–4438 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Eisenberg, H.S., Khoury, G., Durkin, G.A., Simon, C., Bouwmeester, D.: Quantum entanglement of a large number of photons. Phys. Rev. Lett. 93(19), 193901 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Walther, P., Aspelmeyer, M., Zeilinger, A.: Heralded generation of multiphoton entanglement. Phys. Rev. A 75(1), 012313 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81(3), 032307 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Wei, T.C., Lavoie, J., Kaltenbaek, R.: Creating multiphoton-polarization bound entangled states. Phys. Rev. A 83(3), 033839 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Ding, D., Yan, F.L., Gao, T.: Preparation of \(km\)-photon concatenated Greenberger–Horne–Zeilinger states for observing distinctive quantum effects at macroscopic scales. J. Opt. Soc. Am. B 30(11), 3075–3078 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Ding, D., Yan, F.L., Gao, T.: Entangler and analyzer for multiphoton Greenberger–Horne–Zeilinger states using weak nonlinearities. Sci. China-Phys. Mech. Astron. 57(11), 2098–2103 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    He, Y.Q., Ding, D., Yan, F.L., Gao, T.: Preparation and purification of four-photon Greenberger–Horne–Zeilinger state. J. Phys. B At. Mol. Opt. Phys. 48, 055501 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    He, Y.Q., Ding, D., Yan, F.L., Gao, T.: Exploration of photon-number entangled states using weak nonlinearities. Opt. Express 23(17), 21671–21677 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Dong, L., Lin, Y.F., Li, Q.Y., Dong, H.K., Xiu, X.M., Gao, Y.J.: Generation of three-photon polarization-entangled decoherence-free states. Ann. Phys. (N.Y.) 371, 287–295 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chen, L.K., Li, Z.D., Yao, X.C., Huang, M., Li, W., Lu, H., Yuan, X., Zhang, Y.B., Jiang, X., Peng, C.Z., Li, L., Liu, N.L., Ma, X.F., Lu, C.Y., Chen, Y.A., Pan, J.W.: New source of ten-photon entanglement from thin BiB\(_3\)O\(_6\) crystals. Optica 4, 77–83 (2017)CrossRefGoogle Scholar
  15. 15.
    Burnham, D.C., Weinberg, D.L.: Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25(2), 84–87 (1970)ADSCrossRefGoogle Scholar
  16. 16.
    Rarity, J.G., Tapster, P.R.: Experimental violation of Bell’s inequality based on phase and momentum. Phys. Rev. Lett. 64(21), 2495–2498 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    Brendel, J., Mohler, E., Martienssen, W.: Experimental test of Bell’s inequality for energy and time. Europhys. Lett. 20(7), 575–580 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75(24), 4337–4341 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    Ou, Z.Y., Rhee, J.K., Wang, L.J.: Observation of four-photon interference with a beam splitter by pulsed parametric down-conversion. Phys. Rev. Lett. 83(5), 959–962 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    De Martin, F., Di Giusepp, G.: Multiparticle quantum superposition and stimulated entanglement by parity selective amplification of entangled states. Z. Naturforsch. 56, 61–66 (2001)ADSGoogle Scholar
  21. 21.
    Lamas-Linares, A., Howell, J., Bouwmeester, D.: Stimulated emission of polarization-entangled photons. Nature (London) 412(6850), 887–890 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Simon, C., Bouwmeester, D.: Theory of an entanglement laser. Phys. Rev. Lett. 91(5), 053601 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    De Riedmatten, H., Scarani, V., Marcikic, I., Acín, A., Tittel, W., Zbinden, H., Gisin, N.: Two independent photon pairs versus four-photon entangled states in parametric down conversion. J. Mod. Optic. 51(11), 1637–1649 (2004)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Nagata, T., Okamoto, R., O’Brien, J.L., Sasaki, K., Takeuchi, S.: Beating the standard quantum limit with four-entangled photons. Science 316, 726–729 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    He, Y.Q., Ding, D., Yan, F.L., Gao, T.: Scalable symmetry detector and its applications by using beam splitters and weak nonlinearities. Sci. Rep. 7, 15356 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Weinfurter, H., Żukowski, M.: Four-photon entanglement from down-conversion. Phys. Rev. A 64(1), 010102 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    Li, Y., Kobayashi, T.: Four-photon entanglement from two-crystal geometry. Phys. Rev. A 69(2), 020302 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Li, Y., Kobayashi, T.: Erratum: four-photon entanglement from two-crystal geometry [Phys. Rev. A 69, 020302 (2004)]. Phys. Rev. A 72(5), 059905(E) (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Wieczorek, W., Schmid, C., Kiesel, N., Pohlner, R., Gühne, O., Weinfurter, H.: Experimental observation of an entire family of four-photon entangled states. Phys. Rev. Lett. 101, 010503 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Lanyon, B.P., Langford, N.K.: Experimentally generating and tuning robust entanglement between photonic qubits. New J. Phys. 11, 013008 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1–75 (2009)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413–1415 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Yan, F.L., Gao, T., Chitambar, E.: Two local observables are sufficient to characterize maximally entangled states of \(N\) qubits. Phys. Rev. A 83(2), 022319 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Gao, T., Hong, Y., Lu, Y., Yan, F.L.: Efficient \(k\)-separability criteria for mixed multipartite quantum states. Europhys. Lett. 104, 20007 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Gao, T., Yan, F.L., van Enk, S.J.: Permutationally invariant part of a density matrix and nonseparability of \(N\)-qubit states. Phys. Rev. Lett. 112(18), 180501 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics (Long Island City, N.Y.) 1, 195–200 (1964)MathSciNetGoogle Scholar
  39. 39.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969)ADSCrossRefzbMATHGoogle Scholar
  40. 40.
    Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65(15), 1838–1840 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Ardehali, M.: Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. Phys. Rev. A 46(9), 5375–5378 (1992)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Belinskiĭ, A.V., Klyshko, D.N.: Interference of light and Bell’s theorem. Phys. Usp. 36(8), 653–693 (1993)ADSCrossRefGoogle Scholar
  43. 43.
    Werner, R.F., Wolf, M.M.: All-multipartite Bell-correlation inequalities for two dichotomic observables per site. Phys. Rev. A 64(3), 032112 (2001)ADSCrossRefGoogle Scholar
  44. 44.
    Żukowski, M., Brukner, Č.: Bell’s theorem for general \(N\)-qubit states. Phys. Rev. Lett. 88(21), 210401 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    He, Y.Q., Ding, D., Yan, F.L., Gao, T.: Scalable Bell inequalities for multiqubit systems. Europhys. Lett. 111(4), 40001 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Dell’Anno, F., De Siena, S., Illuminati, F.: Multiphoton quantum optics and quantum state engineering. Phys. Rep. 428, 53–168 (2006)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceNorth China Institute of Science and TechnologyBeijingChina
  2. 2.Department of Biomedical EngineeringChengde Medical UniversityChengdeChina
  3. 3.College of Physics Science and Information EngineeringHebei Normal UniversityShijiazhuangChina
  4. 4.College of Mathematics and Information ScienceHebei Normal UniversityShijiazhuangChina

Personalised recommendations