Quantum Information Processing

, 17:215 | Cite as

Weak limit theorem for a nonlinear quantum walk

  • Masaya Maeda
  • Hironobu Sasaki
  • Etsuo Segawa
  • Akito SuzukiEmail author
  • Kanako Suzuki


This paper continues the study of large time behavior of a nonlinear quantum walk begun in Maeda et al. (Discrete Contin Dyn Syst 38:3687–3703, 2018). In this paper, we provide a weak limit theorem for the distribution of the nonlinear quantum walk. The proof is based on the scattering theory of the nonlinear quantum walk, and the limit distribution is obtained in terms of its asymptotic state.


Quantum walk Nonlinear quantum walk Scattering theory Weak limit theorem 



M.M. was supported by the JSPS KAKENHI Grant Numbers JP15K17568, JP17H02851, and JP17H02853. H.S. was supported by JSPS KAKENHI Grant Number JP17K05311. E.S. acknowledges the financial support from the Grant-in-Aid for Young Scientists (B) and of Scientific Research (B) Japan Society for the Promotion of Science (Grant No. 16K17637 and No. 16K03939). A.S. was supported by JSPS KAKENHI Grant Numbers JP26800054 and JP18K03327. K.S acknowledges JSPS Grant-in-Aid for Scientific Research (C) 26400156 and 18K03354.


  1. 1.
    Di Molfetta, G., Debbasch, F., Brachet, M.: Nonlinear optical Galton board: thermalization and continuous limit. Phys. Rev. E 92, 042923 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Endo, S., Endo, T., Konno, N., Segawa, E., Takei, M.: Weak limit theorem of a two-phase quantum walk with one defect, Interdiscip. Inform. Sci. J-STAGE Advance, Graduate School of Information Sciences, Tohoku University (2016)Google Scholar
  3. 3.
    Endo, T., Konno, N., Obuse, H., Segawa, E.: Sensitivity of quantum walks to a boundary of two-dimensional lattices: approaches based on the CGMV method and topological phases. J. Phys. A Math. Theor. 50(45), 455302 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fuda, T., Funakawa, D., Suzuki, A.: Weak limit theorem for a one-dimensional split-step quantum walk, arXiv:1804.05125 (2018)
  5. 5.
    Gerasimenko, Y., Tarasinski, B., Beenakker, C.W.J.: Attractor-repeller pair of topological zero modes in a nonlinear quantum walk. Phys. Rev. A 93, 022329 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Grimmett, G., Janson, S., Scudo, P.F.: Weak limits for quantum random walks. Phys. Rev. E 69, 026119 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Higuchi, Yu., Konno, N., Sato, I., Segawa, E.: Spectral and asymptotic properties of Grover walks on crystal lattices. J. Funct. Anal. 267, 4197–4235 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Higuchi, Yu., Segawa, E.: The spreading behavior of quantum walks induced by drifted random walks on some magnifier graph. Quantum Inf. Comput. 17, 0399–0414 (2017)MathSciNetGoogle Scholar
  9. 9.
    Konno, N.: Quantum random walks in one dimension. Quantum Inf. Process. 1(5), 345–354 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Konno, N.: A new type of limit theorems for the one-dimensional quantum random walk. J. Math. Soc. Jpn. 57(4), 1179–1195 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Konno, N., Łuczak, T., Segawa, E.: Limit measures of inhomogeneous discrete-time quantum walks in one dimension. Quantum Inf. Process. 12(1), 33–53 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lee, C.-W., Kurzyński, P., Nha, H.: Quantum walk as a simulator of nonlinear dynamics: nonlinear Dirac equation and solitons. Phys. Rev. A 92, 052336 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Machida, T., Segawa, E.: Trapping and spreading properties of quantum walk in homological structure. Quantum Inf. Process. 14, 1539–1558 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Maeda, M., Sasaki, H., Segawa, E., Suzuki, A., Suzuki, K.: Scattering and inverse scattering for nonlinear quantum walks. Discrete Contin. Dyn. Syst. 38, 3687–3703 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Maeda, M., Sasaki, H., Segawa, E., Suzuki, A., Suzuki, K.: Dynamics of solitons to a nonlinear quantum walk (in preparation)Google Scholar
  16. 16.
    Navarrete-Benlloch, C., Pérez, A., Roldán, E.: Nonlinear optical Galton board. Phys. Rev. A 75, 062333 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Richard, S., Suzuki, A., Tiedra de Aldecoa, R.: Quantum walks with an anisotropic coin I: spectral theory. Lett. Math. Phys. 108, 331–357 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Richard, S., Suzuki, A., Tiedra de Aldecoa, R.: Quantum walks with an anisotropic coin II: scattering theory. Lett. Math. Phys. (2018).
  19. 19.
    Shikano, Y., Wada, T., Horikawa, J.: Discrete-time quantum walk with feed-forward quantum coin. Sci. Rep. 4, 4427 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Suzuki, A.: Asymptotic velocity of a position-dependent quantum walk. Quantum Inf. Process. 15(1), 103–119 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Informatics, Faculty of ScienceChiba UniversityChibaJapan
  2. 2.Graduate School of Information SciencesTohoku UniversitySendaiJapan
  3. 3.Division of Mathematics and Physics, Faculty of EngineeringShinshu UniversityNaganoJapan
  4. 4.College of ScienceIbaraki UniversityMitoJapan

Personalised recommendations