Optical response mediated by a two-level system in the hybrid optomechanical system

  • Yang Zhang
  • Tong Liu
  • Shao-xiong Wu
  • Chang-shui YuEmail author


The optical response is studied in a hybrid nanomechanical system which is that a superconducting qubit is coupled with the mechanical mode. We show that the system displays the phenomena of the coherent perfect photon reflection, transmission, absorption, and synthesis. The qubit–mechanical interaction can lead to significantly modified optical response properties and provide a new interference channel for the optical response and add an additional perfect transmission, reflection, absorption, or synthesis point in such a hybrid system. This work may open up the hybrid optomechanical system as a perfect reflector, transistor, absorber, and synthesizer for the study of optical switch in the future quantum networks.


Optomechanical system Nonlinear interaction Optical response 



This work was supported by the National Natural Science Foundation of China, under Grant Nos. 11775040, 11375036, and 11704026, the Xinghai Scholar Cultivation Plan, and the Fundamental Research Fund for the Central Universities under Grant No. DUT18LK45.


  1. 1.
    Aspelmeyer, M., Kippenberg, T.J., Marquardt, F. (eds.): Optomechanics Cavity. Quantum Science and Technology. Springer, Berlin (2014)Google Scholar
  2. 2.
    Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Aspelmeyer, M., Meystre, P., Schwab, K.: Quantum optomechanics. Phys. Today 65, 29–35 (2012)CrossRefGoogle Scholar
  4. 4.
    Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Stambaugh, C., Xu, H.T., Kemiktarak, U., Taylor, J., Lawall, J.: From membrane-in-the-middle to mirror-in-the-middle with a high-reflectivity sub-wavelength grating. Ann. Phys. (Berlin) 527, 81–88 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Palomaki, T.A., Harlow, J.W., Teufel, J.D., Simmonds, R.W., Lehnert, K.W.: Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nat. (Lond.) 495, 210–214 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Zhang, J., Peng, K.C., Braunstein, S.L.: Quantum-state transfer from light to macroscopic oscillators. Phys. Rev. A 68, 013808 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Vitali, D., Gigan, S., Ferreira, A., Bohm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Bochmann, J., Vainsencher, A., Awschalom, D.D., Cleland, A.N.: Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013)CrossRefGoogle Scholar
  10. 10.
    Andrews, R.W., Peterson, R.W., Purdy, T.P., Cicak, K., Simmonds, R.W., Regal, C.A., Lehnert, K.W.: Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014)CrossRefGoogle Scholar
  11. 11.
    Tian, L.: Optoelectromechanical transducer: Reversible conversion between microwave and optical photons. Ann. Phys. (Berlin) 527, 1–14 (2015)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Safavi-Naeini, A.H., Groeblacher, S., Hill, J.T., Chan, J., Aspelmeyer, M., Painter, O.: Squeezed light from a silicon micromechanical resonator. Nat. (Lond.) 500, 185–189 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Agarwal, G.S., Huang, S.M.: Strong mechanical squeezing and its detection. Phys. Rev. A 93, 043844 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Gavartin, E., Verlot, P., Kippenberg, T.J.: A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol. 7, 509–514 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Basiri-Esfahani, S., Akram, U., Milburn, G.J.: Phonon number measurements using single photon opto-mechanics. New J. Phys. 14, 085017 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Xiong, H., Si, L.G., Wu, Y.: Precision measurement of electrical charges in an optomechanical system beyond linearized dynamics. Appl. Phys. Lett. 110, 171102 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Santamore, D.H., Doherty, A.C., Cross, M.C.: Quantum nondemolition measurement of Fock states of mesoscopic mechanical oscillators. Phys. Rev. B 70, 144301 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Martin, I., Zurek, W.H.: Measurement of energy eigenstates by a slow detector. Phys. Rev. Lett. 98, 120401 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Li, J.J., Zhu, K.D.: All-optical mass sensing with coupled mechanical resonator systems. Phys. Rep. 525, 223–254 (2013)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Yin, Z.Q., Yang, W.L., Sun, L., Duan, L.M.: Quantum network of superconducting qubits through an optomechanical interface. Phys. Rev. A 91, 012333 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Bennett, J.S., Khosla, K., Madsen, L.S., Rubinsztein-Dunlop, H., Bowen, W.P.: A quantum optomechanical interface beyond the resolved sideband limit. New J. Phys. 18, 053030 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Fiore, V., Yang, Y., Kuzyk, M.C., Barbour, R., Tian, L., Wang, H.L.: Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys. Rev. Lett. 107, 133601 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Agarwal, G.S., Huang, S.M.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520–1523 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Jiang, C., Liu, H.X., Cui, Y.S., Li, X.W., Chen, G.B., Chen, B.: Electromagnetically induced transparency and slow light in two-mode optomechanics. Opt. Express 21, 12165–12173 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Zhou, X., Hocke, F., Schliesser, A., Marx, A., Huebl, H., Gross, R., Kippenberg, T.J.: Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nat. Phys. 9, 179–184 (2013)CrossRefGoogle Scholar
  27. 27.
    Karuza, M., Biancofiore, C., Bawaj, M., Molinelli, C., Galassi, M., Natali, R., Tombesi, P., Giuseppe, G.D., Vitali, D.: Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature. Phys. Rev. A 88, 013804 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Singh, V., Bosman, S.J., Schneider, B.H., Blanter, Y.M., Castellanos-Gomez, A., Steele, G.A.: Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nat. Nanotechnol. 9, 820–824 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Shevchuk, O., Singh, V., Steele, G.A., Blanter, Y.M.: Optomechanical response of a nonlinear mechanical resonator. Phys. Rev. B 92, 195415 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Xu, X.W., Li, Y.: Controllable optical output fields from an optomechanical system with mechanical driving. Phys. Rev. A 92, 023855 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Safavi-Naeini, A.H., Alegre, T.P.M., Chan, J., Eichenfeld, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nat. (Lond.) 472, 69–73 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Jiang, C., Cui, Y.S., Bian, X.T., Zuo, F., Yu, H.L., Chen, G.B.: Phase-dependent multiple optomechanically induced absorption in multimode optomechanical systems with mechanical driving. Phys. Rev. A 94, 023837 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    Kronwald, A., Marquardt, F.: Optomechanically induced transparency in the nonlinear quantum regime. Phys. Rev. Lett. 111, 133601 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Li, W.L., Jiang, Y.F., Li, C., Song, H.S.: Parity-time-symmetry enhanced optomechanically-induced-transparency. Sci. Rep. 6, 31095 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Agrwal, G.S., Huang, S.M.: Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes. New J. Phys. 16, 033023 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Nie, W.J., Chen, A.X., Lan, Y.H.: Optical-response properties in levitated optomechanical systems beyond the low-excitation limit. Phys. Rev. A 93, 023841 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Lü, H., Jiang, Y.J., Wand, Y.Z., Jing, H.: Optomechanically induced transparency in a spinning resonator. Photonic Rear. 5, 367–371 (2017)CrossRefGoogle Scholar
  38. 38.
    Liu, Y.C., Li, B.B., Xiao, Y.F.: Electromagnetically induced transparency in optical microcavities. Nanophotonics 6, 789–811 (2017)CrossRefGoogle Scholar
  39. 39.
    Yan, X.B., Cui, C.L., Gu, K.H., Tian, X.D., Fu, C.B., Wu, J.H.: Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system. Opt. Express 22, 4886–4895 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    Qu, K., Agarwal, G.S.: Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems. Phys. Rev. A 87, 031802(R) (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Liu, Y.M., Gao, F., Wang, J., Wu, J.H.: All-optical transistor based on Rydberg atom-assisted optomechanical system. arXiv:1709.04116 (2017)
  42. 42.
    Wu, Q., Zhang, J.Q., Wu, J.H., Feng, M., Zhang, Z.M.: Tunable multi-channel inverse optomechanically induced transparency and its applications. Opt. Express 23, 18534–18547 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    Lei, F.C., Gao, M., Du, C.G., Jing, Q.L., Long, G.L.: Three-pathway electromagnetically induced transparency in coupled-cavity optomechanical system. Opt. Express 23, 11508–11517 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    Geng, Q., Zhu, K.D.: Determination of nonlinear nanomechanical resonator-qubit coupling coefficient in a hybrid quantum system. Appl. Opt. 55, 5358–5361 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    Restrepo, J., Ciuti, C., Favero, I.: Single-polariton optomechanics. Phys. Rev. Lett. 112, 013601 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    Sete, E.A., Eleuch, H.: Strong squeezing and robust entanglement in cavity electromechanics. Phys. Rev. A 89, 013841 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    Akram, M.J., Ghafoor, F., Saif, F.: Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics. J. Phys. B 48, 065502 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    Holz, T., Betzholz, R., Bienert, M.: Suppression of Rabi oscillations in hybrid optomechanical systems. Phys. Rev. A 92, 043822 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    Zhou, B.Y., Li, G.X.: Ground-state cooling of a nanomechanical resonator via single-polariton optomechanics in a coupled quantum-dot-cavity system. Phys. Rev. A 94, 033809 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    Jia, W.Z., Wang, Z.D.: Single-photon transport in a one-dimensional waveguide coupling to a hybrid atom-optomechanical system. Phys. Rev. A 88, 063821 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    Xiong, W., Jin, D.Y., Qiu, Y.Y., Lam, C.H., You, J.Q.: Cross-Kerr effect on an optomechanical system. Phys. Rev. A 93, 023844 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    LaHaye, M.D., Suh, J., Echternach, P.M., Schwab, K.C., Roukes, M.L.: Nanomechanical measurements of a superconducting qubit. Nat. (Lond.) 459, 960–964 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    Pirkkalainen, J.M., Cho, S.U., Massel, F., Tuorila, J., Heikkilä, T.T., Hakonen, P.J., Sillanpää, M.A.: Cavity optomechanics mediated by a quantum two-level system. Nat. Commun. 6, 6981 (2015)CrossRefGoogle Scholar
  54. 54.
    Restrepo, J., Favero, I., Ciuti, C.: Fully coupled hybrid cavity optomechanics: quantum interferences and correlations. Phys. Rev. A 95, 023832 (2017)ADSCrossRefGoogle Scholar
  55. 55.
    Wang, H., Gu, X., Liu, Y.X., Miranowicz, A., Nori, F.: Optomechanical analog of two-color electromagnetically induced transparency: photon transmission through an optomechanical device with a two-level system. Phys. Rev. A 90, 023817 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    Tian, L.: Cavity cooling of a mechanical resonator in the presence of a two-level-system defect. Phys. Rev. B 84, 035417 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    Ramos, T., Sudhir, V., Stannigel, K., Zoller, P., Kippenberg, T.J.: Nonlinear quantum optomechanics via individual intrinsic two-level defects. Phys. Rev. Lett. 110, 193602 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.E.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nat. (Lond.) 452, 72–75 (2008)ADSCrossRefGoogle Scholar
  59. 59.
    Karuza, M., Biancofiore, C., Bawaj, M., Molinelli, C., Galassi, M., Natali, R., Tombesi, P., Giuseppe, G.D., Vitali, D.: Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature. Phys. Rev. A 88, 013804 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    Huo, W.Y., Long, G.L.: Entanglement and squeezing in solid-state circuits. New J. Phys. 10, 013026 (2008)ADSCrossRefzbMATHGoogle Scholar
  61. 61.
    Manzoni, C., Mücke, O.D., Cirmi, G., Fang, S.B., Moses, J., Huang, S.W., Hong, K.H., Cerullo, G., Kärtner, F.X.: Coherent pulse synthesis: towards sub-cycle optical waveforms. Laser Photonics Rev. 9, 1–43 (2015)CrossRefGoogle Scholar
  62. 62.
    Hafezi, M., Rabl, P.: Optomechanically induced non-reciprocity in microring resonators. Opt. Express 20, 7672–7684 (2012)ADSCrossRefGoogle Scholar
  63. 63.
    Yu, Z.F., Fan, S.H.: Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics 3, 91–94 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    Aplet, L.J., Carson, J.W.: A faraday effect optical isolator. Appl. Opt. 3, 544–545 (1964)ADSCrossRefGoogle Scholar
  65. 65.
    Lira, H., Yu, Z.F., Fan, S.H., Lipson, M.: Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012)ADSCrossRefGoogle Scholar
  66. 66.
    Wan, W.J., Chong, Y.D., Ge, L., Noh, H., Stone, A.D., Cao, H.: Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011)ADSCrossRefGoogle Scholar
  67. 67.
    Stone, A.D.: Gobbling up light with an antilaser. Phys. Today 64, 68 (2011)CrossRefGoogle Scholar
  68. 68.
    Zanotto, S., et al.: Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption. Nat. Phys. 10, 830–834 (2014)CrossRefGoogle Scholar
  69. 69.
    Kang, M., Chong, Y.D.: Coherent optical control of polarization with a critical metasurface. Phys. Rev. A 92, 043826 (2015)ADSCrossRefGoogle Scholar
  70. 70.
    Huang, S.M., Agarwal, G.S.: Coherent perfect absorption of path entangled single photons. Opt. Express 22, 20936–20947 (2014)ADSCrossRefGoogle Scholar
  71. 71.
    Chong, Y.D., Ge, L., Cao, H., Stone, A.D.: Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yang Zhang
    • 1
    • 2
  • Tong Liu
    • 3
  • Shao-xiong Wu
    • 4
  • Chang-shui Yu
    • 3
    Email author
  1. 1.Institute of Theoretical PhysicsShanxi Datong UniversityDatongChina
  2. 2.Department of PhysicsShanxi Datong UniversityDatongChina
  3. 3.School of PhysicsDalian University of TechnologyDalianChina
  4. 4.School of ScienceNorth University of ChinaTaiyuanChina

Personalised recommendations