Advertisement

Quantum conference

  • Anindita Banerjee
  • Kishore Thapliyal
  • Chitra Shukla
  • Anirban Pathak
Article

Abstract

A notion of quantum conference is introduced in analogy with the usual notion of a conference that happens frequently in today’s world. Quantum conference is defined as a multiparty secure communication task that allows each party to communicate their message simultaneously to all other parties in a secure manner using quantum resources. Two efficient and secure protocols for quantum conference have been proposed. The security and efficiency of the proposed protocols have been analyzed critically. It is shown that the proposed protocols can be realized using a large number of entangled states and group of operators. Further, it is shown that the proposed schemes can be easily reduced to a protocol for multiparty quantum key distribution and some earlier proposed schemes of quantum conference, where the notion of quantum conference was different.

Keywords

Secure quantum communication Quantum conference Multiparty quantum communication Entangled states 

Notes

Acknowledgements

AB acknowledges support from the Council of Scientific and Industrial Research, Government of India (Scientists’ Pool Scheme). CS thanks Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for JSPS Fellows No. 15F15015. She also thanks Tsinghua University, Beijing, China for the Post-Doctoral Fellowship awarded by the University. KT and AP thank Defense Research & Development Organization (DRDO), India for the support provided through the Project Number ERIP/ER/1403163/M/01/1603.

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)Google Scholar
  2. 2.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, Santa Fe. IEEE Computer Society Press (1994)Google Scholar
  3. 3.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Die, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor. 22, 644–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)MathSciNetCrossRefzbMATHADSGoogle Scholar
  6. 6.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)MathSciNetCrossRefzbMATHADSGoogle Scholar
  7. 7.
    Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239 (1995)MathSciNetCrossRefzbMATHADSGoogle Scholar
  8. 8.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)CrossRefADSGoogle Scholar
  9. 9.
    Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)CrossRefADSGoogle Scholar
  10. 10.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)CrossRefADSGoogle Scholar
  11. 11.
    Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52, 1914 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Long, G-l, Deng, F-g, Wang, C., Li, X-h, Wen, K., Wang, W-y: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251 (2007)CrossRefADSGoogle Scholar
  13. 13.
    Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944 (2012)CrossRefADSGoogle Scholar
  14. 14.
    Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quantum Inf. Process. 14, 2195 (2015)MathSciNetCrossRefzbMATHADSGoogle Scholar
  15. 15.
    Yan, F.L., Zhang, X.: A scheme for secure direct communication using EPR pairs and teleportation. Euro. Phys. J. B 41, 75 (2004)CrossRefADSGoogle Scholar
  16. 16.
    Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)CrossRefADSGoogle Scholar
  17. 17.
    Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)zbMATHGoogle Scholar
  18. 18.
    An, N.B.: Quantum dialogue. Phys. Lett. A 328, 6 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wen, X., Liu, Y., Zhou, N.: Secure quantum telephone. Opt. Commun. 275, 278 (2007)CrossRefADSGoogle Scholar
  20. 20.
    Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. Eur. Phys. Lett. 87, 60008 (2009)CrossRefADSGoogle Scholar
  21. 21.
    Wang, H., Zhang, Y.Q., Liu, X.F., Hu, Y.P.: Efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf. Process. 15, 2593 (2016)MathSciNetCrossRefzbMATHADSGoogle Scholar
  22. 22.
    Zhang, L.-L., Zhan, Y.-B.: Quantum dialogue by using the two-qutrit entangled states. Mod. Phys. Lett. B 23, 2993 (2009)MathSciNetCrossRefzbMATHADSGoogle Scholar
  23. 23.
    Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12, 2131 (2013)MathSciNetCrossRefzbMATHADSGoogle Scholar
  24. 24.
    Chang, C.H., Yang, C.W., Hzu, G.R., Hwang, T., Kao, S.H.: Quantum dialogue protocols over collective noise using entanglement of GHZ state. Quantum Inf. Process. 15, 2971–2991 (2016)MathSciNetCrossRefzbMATHADSGoogle Scholar
  25. 25.
    Wikipedia: Conference. https://en.wikipedia.org/wiki/Conference. Accessed 28 Jan 2017
  26. 26.
    English Oxford Dictionaries: Conference. https://en.oxforddictionaries.com/definition/conference. Accessed 28 Jan 2017
  27. 27.
    Thapliyal, K., Sharma, R.D., Pathak, A.: Protocols for quantum binary voting. Int. J. Theor. Phys. 15, 1750007 (2016)zbMATHGoogle Scholar
  28. 28.
    Liu, W.J., Wang, H.B., et al.: Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf. Process. 15, 869–879 (2016)MathSciNetCrossRefzbMATHADSGoogle Scholar
  29. 29.
    Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16, 169 (2017)CrossRefzbMATHADSGoogle Scholar
  30. 30.
    Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)MathSciNetCrossRefzbMATHADSGoogle Scholar
  31. 31.
    Huang, W., Yang, Y.-H., Jia, H.-Y.: Cryptanalysis and improvement of a quantum communication-based online shopping mechanism. Quantum Inf. Process. 14, 2211–2225 (2015)CrossRefzbMATHADSGoogle Scholar
  32. 32.
    Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391 (2014)MathSciNetCrossRefzbMATHADSGoogle Scholar
  33. 33.
    Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822 (1998)CrossRefADSGoogle Scholar
  34. 34.
    Chen, K., Lo, H.-W.: Multi-partite quantum cryptographic protocols with noisy GHZ states. Quantum Inf. Comput. 7, 689–715 (2007)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Li, X.H., Li, C.Y., Deng, F.G., Liang, Y.J., Zhou, P., Zhou, H.Y.: Multiparty quantum remote secret conference. Chin. Phys. Lett. 24, 23–26 (2007)CrossRefADSGoogle Scholar
  36. 36.
    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Liang, Y.J., Zhou, H.Y.: Multiparty Quantum Secret Report. Chin. Phys. Lett. 23, 1676–1679 (2006)CrossRefADSGoogle Scholar
  37. 37.
    Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518 (2013)MathSciNetCrossRefADSGoogle Scholar
  38. 38.
    Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 49 (2017)MathSciNetCrossRefzbMATHADSGoogle Scholar
  39. 39.
    Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)CrossRefADSGoogle Scholar
  40. 40.
    Pirandola, S., Braunstein, S.L.: Physics: unite to build a quantum Internet. Nature 532, 169–171 (2016)CrossRefADSGoogle Scholar
  41. 41.
    Smania, M., Elhassan, A.M., Tavakoli, A., Bourennane, M.: Experimental quantum multiparty communication protocols. NPJ Quantum Inf. 2, 16010 (2016)CrossRefADSGoogle Scholar
  42. 42.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91, 144101 (2007)CrossRefADSGoogle Scholar
  43. 43.
    Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)CrossRefADSGoogle Scholar
  44. 44.
    Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)CrossRefADSGoogle Scholar
  45. 45.
    Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)CrossRefADSGoogle Scholar
  46. 46.
    Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)CrossRefADSGoogle Scholar
  47. 47.
    Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Żukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)CrossRefADSGoogle Scholar
  48. 48.
    Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599–2616 (2015)MathSciNetCrossRefzbMATHADSGoogle Scholar
  49. 49.
    Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703–1718 (2016)MathSciNetCrossRefzbMATHADSGoogle Scholar
  50. 50.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008)zbMATHGoogle Scholar
  51. 51.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)CrossRefADSGoogle Scholar
  52. 52.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)CrossRefADSGoogle Scholar
  53. 53.
    Pathak, A., Thapliyal, K.: A comment on the one step quantum key distribution based on EPR entanglement. arXiv preprint arXiv:1609.07473 (2016)
  54. 54.
    Aravinda, S., Srikanth, R., Pathak, A.: On the origin of nonclassicality in single systems. J. Phys. A 50, 465303 (2017)MathSciNetCrossRefzbMATHADSGoogle Scholar
  55. 55.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)CrossRefADSGoogle Scholar
  56. 56.
    Mishra, S., et al.: An integrated hierarchical dynamic quantum secret sharing protocol. Int. J. Theor. Phys. 54, 3143–3154 (2015)CrossRefzbMATHGoogle Scholar
  57. 57.
    Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum. Inf. Process. 15, 4681 (2016)MathSciNetCrossRefzbMATHADSGoogle Scholar
  58. 58.
    Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels. Quantum Inf. Process. 16, 115 (2017)MathSciNetCrossRefzbMATHADSGoogle Scholar
  59. 59.
    Hu, J.-Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)CrossRefGoogle Scholar
  60. 60.
    Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Center for Astroparticle Physics and Space ScienceBose InstituteKolkataIndia
  2. 2.Department of Physics and Materials Science and EngineeringJaypee Institute of Information TechnologyNoidaIndia
  3. 3.Graduate School of Information ScienceNagoya UniversityChikusa-kuJapan
  4. 4.State Key Laboratory of Low-Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijingChina

Personalised recommendations