Advertisement

Controlled mutual quantum entity authentication with an untrusted third party

  • Min-Sung Kang
  • Jino Heo
  • Chang-Ho Hong
  • Hyung-Jin Yang
  • Sang-Wook HanEmail author
  • Sung Moon
Article

Abstract

We propose a quantum control entity mutual authentication protocol that can be executed in environments involving an untrusted third party. In general, the third party, referred to as Charlie, can be an entity such as a telephone company, server, financial company, or login webpage for a portal service. Most communication protocols controlled by third parties are vulnerable to internal attacks. In this study, we present two solutions that make use of an entanglement correlation checking method and random numbers against an internal attack by an untrusted third party.

Keywords

Quantum entity authentication GHZ-like state Untrusted third party Internal attack 

Notes

Acknowledgements

This work was supported by the ICT R&D programs of MSIP/IITP (Grant No. B0101-16-1355), the KIST research program (Grant No. 2E27801). C.-H. Hong is supported by the ICT R&D program of MSIP/IITP [1711057505, Reliable crypto-system standards and core technology development for secure quantum key distribution network].

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)Google Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Tang, Y.L., Yin, H.L., Chen, S.J., et al.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 114, 069901 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    He, J., Li, Q., Wu, C., Chan, W.H., Zhang, S.: Measurement-device-independent semiquantum key distribution. Int. J. Quantum Inf. 16, 1850012 (2018)CrossRefGoogle Scholar
  7. 7.
    Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Gao, T., Yan, F.L., Wang, Z.X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14(5), 893–897 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Yang, K., Huang, L., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516–521 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Wang, X.W., Su, Y.H., Yang, G.J.: Controlled teleportation against uncooperation of part of supervisors. Quantum Inf. Process. 8, 319–330 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wang, T.Y., Wen, Q.Y.: Controlled quantum teleportation with Bell states. Chin. Phys. B 20(4), 040307 (2011)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum–secret–sharing schemes. Phys. Rev. A 69, 052307 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Deng, F.G., Li, X.H., Zhou, H.Y.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72, 044302 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Li, X.H., Zhou, P., Li, C.Y., et al.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B: At. Mol. Opt. Phys. 39(8), 1975–1983 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Efficient multiparty quantum secret sharing with Greenberger-Horne-Zeilinger States. Chin. Phys. Lett. 23(5), 1084–1087 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Hsieh, C.R., Tsai, C.W., Hwang, T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54(6), 1019–1022 (2010)CrossRefzbMATHGoogle Scholar
  21. 21.
    Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12, 365–380 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chen, X.B., Xu, G., Su, Y., Yang, Y.X.: Robust variations of secret sharing through noisy quantum channel. Quantum Inf. Comput. 14(78), 589–607 (2014)MathSciNetGoogle Scholar
  23. 23.
    Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22(1), 18–21 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Gao, T., Yan, F.L., Wang, Z.X.: Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J. Phys. A 38, 5761 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wang, C., Deng, F., Long, G.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt. Commun. 253, 15 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Lee, H., Lim, J., Yang, H.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., Hong, S.K., Yeon, K.H., Um, C.I.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1), 67–70 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Man, Z.-X., Xia, Y.-J., An, N.B.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B: At. Mol. Opt. Phys. 39, 3855–3864 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Kao, S.H., Hwang, T.: Cryptanalysis and improvement of controlled secure direct communication. Chin. Phys. B 22, 060308 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Dong, L., Xiu, X.M., Gao, Y.J., Ren, Y.P., Liu, H.W.: Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement. Opt. Commun. 284, 905–908 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285–288 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325–2342 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zhou, N.R., Cheng, H.L., Tao, X.Y., Gong, L.H.: Three-party remote state preparation schemes based on entanglement. Quantum Inf. Process. 13, 513 (2014)ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    Chen, X.-B., Dou, Z., Xu, G., Wang, C., Yang, Y.: A class of protocols for quantum private comparison based on the symmetry of states. Quantum Inf. Process. 13, 85 (2014)ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    Wei, Z.H., Chen, X.B., Niu, X.X., et al.: The quantum steganography protocol via quantum noisy channels. Int. J. Theor. Phys. 54(8), 2505–2515 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Xu, G., Chen, X.-B., Dou, Z., Yang, Y.-X., Li, Z.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14, 2959–2980 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Peev, M., Pacher, C., Alléaume, R., et al.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    Sasaki, M., Fujiwara, M., Ishizuka, H., et al.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387–10409 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., et al.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007)CrossRefGoogle Scholar
  40. 40.
    Fröhlich, B., Dynes, J.F., Lucamarini, M., Sharpe, A.W., Yuan, Z., Shields, A.J.: A quantum access network. Nature 501(7465), 69–72 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Tang, Y.-L., Yin, H.-L., Zhao, Q., et al.: Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X 6, 011024 (2016)Google Scholar
  42. 42.
    Hong, C.H., Heo, J., Khym, G.L., Lim, J.I., Hong, S.K., Yang, H.J.: N quantum channels are sufficient for multi-user quantum key distribution protocol between n users. Opt. Commun. 283, 2644 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: A quantum network system of QSS-QDC using χ-type entangled states. Chin. Phys. Lett. 29, 050303 (2012)CrossRefGoogle Scholar
  44. 44.
    Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Multi-user quantum network system and quantum communication using χ-type entangled states. J. Korean. Phys. Soc. 61, 1–5 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Quantum secure direct communication network with hyperentanglement. Chin. Phys. B 23, 090309 (2014)CrossRefGoogle Scholar
  46. 46.
    Li, J., Chen, X.B., Xu, G., et al.: Perfect quantum network coding independent of classical network solutions. IEEE Commun. Lett. 19, 115–118 (2015)CrossRefGoogle Scholar
  47. 47.
    Broadbent, A.J., Fitzsimons, F., Kashefi, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, p. 517. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  48. 48.
    Li, Q., Li, Z., Chan, W.H., Zhang, S., Liu, C.: Blind quantum computation with identity authentication. Phys. Lett. A 382, 938 (2018)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security, pp. 113–124 (2011)Google Scholar
  50. 50.
    Tebaa, M., El Hajji, S., El Ghazi, A.: Homomorphic encryption applied to the cloud computing security. Proc. World Congr. Eng. 1, 4–6 (2012)Google Scholar
  51. 51.
    Kang, M.S., Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Controlled mutual quantum entity authentication using entanglement swapping. Chin. Phys. B 24, 090306 (2015)CrossRefGoogle Scholar
  52. 52.
    Gao, G., Wang, Y.: Cryptanalysis of controlled mutual quantum entity authentication using entanglement swapping. Commun. Theor. Phys. 67(1), 33–36 (2017)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    Ingemarsson, I., Simmons, G.J.: A protocol to set up shared secret schemes without the assistance of a mutually trusted party. In: Advances in Cryptology—Proceedings of Eurocrypt’90, pp. 266–282. Springer, Berlin (1991)Google Scholar
  54. 54.
    Gao, G., Fang, M., Cheng, M.T.: Cryptanalysis and improvement of a quantum network system of QSS-QDC using chi-type entangled states. Chin. Phys. Lett. 29, 110305 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    Heo, J., Kang, M.S., Hong, C.H., Yang, H., Choi, S.G.: Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication. Quantum Inf. Process. 16, 24 (2017)ADSCrossRefzbMATHGoogle Scholar
  56. 56.
    Heo, J., Kang, M.S., Hong, C.H., Choi, S.G., Hong, J.P.: Constructions of secure entanglement channels assisted by quantum dots inside single-sided optical cavities. Opt. Commun. 396, 239 (2017)ADSCrossRefGoogle Scholar
  57. 57.
    Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)ADSCrossRefGoogle Scholar
  58. 58.
    Li, C.Y., Li, X.H., et al.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23, 2896 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    Yoon, C.S., Kang, M.S., Lim, J.I., Yang, H.J.: Quantum signature scheme based on a quantum search algorithm. Phys. Scr. 90, 015103 (2015)ADSCrossRefGoogle Scholar
  60. 60.
    Hong, C.H., Lim, J.I., Kim, J.I., Yang, H.J.: Two-way quantum direct communication protocol using entanglement swapping. Korean Phys. Soc. 56, 1733 (2010)CrossRefGoogle Scholar
  61. 61.
    Hong, C.H., Heo, J., Jang, J.G., Kwon, D.: Quantum identity authentication with single photon. Quantum Inf. Process. 16(10), 236–2181 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Min-Sung Kang
    • 1
  • Jino Heo
    • 2
  • Chang-Ho Hong
    • 3
  • Hyung-Jin Yang
    • 4
    • 5
  • Sang-Wook Han
    • 1
    Email author
  • Sung Moon
    • 1
  1. 1.Center for Quantum InformationKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
  2. 2.School of Information and Communication EngineeringChungbuk National UniversityCheongjuRepublic of Korea
  3. 3.National Security Research InstituteYuseong, DaejeonRepublic of Korea
  4. 4.Graduate School of Information SecurityKorea UniversitySeoulRepublic of Korea
  5. 5.Department of PhysicsKorea UniversitySejongRepublic of Korea

Personalised recommendations