Semiconducting double-dot exchange-only qubit dynamics in the presence of magnetic and charge noises

  • E. Ferraro
  • M. Fanciulli
  • M. De Michielis


The effects of magnetic and charge noises on the dynamical evolution of the double-dot exchange-only qubit (DEOQ) is theoretically investigated. The DEOQ consisting of three electrons arranged in an electrostatically defined double quantum dot deserves special interest in quantum computation applications. Its advantages are in terms of fabrication, control and manipulation in view of implementation of fast single and two-qubit operations through only electrical tuning. The presence of the environmental noise due to nuclear spins and charge traps, in addition to fluctuations in the applied magnetic field and charge fluctuations on the electrostatic gates adopted to confine the electrons, is taken into account including random magnetic field and random coupling terms in the Hamiltonian. The behavior of the return probability as a function of time for initial conditions of interest is presented. Moreover, through an envelope-fitting procedure on the return probabilities, coherence times are extracted when model parameters take values achievable experimentally in semiconducting devices.


Qubit architectures Quantum dots Noise Coherence time 



This work has been funded from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 688539.


  1. 1.
    Shulman, M., Dial, O., Harvey, S., Bluhm, H., Umansky, V., Yacoby, A.: Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science 336, 202–205 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Veldhorst, M., Hwang, J.C.C., Yang, C.H., Leenstra, A.W., de Ronde, B., Dehollain, J.P., Muhonen, J.T., Hudson, F.E., Itoh, K.M., Morello, A., Dzurak, A.S.: An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Pla, J., Tan, K., Dehollain, J., Lim, W., Morton, J., Jamieson, D., Dzurak, A., Morello, A.: A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Maune, B.M., Borselli, M.G., Huang, B., Ladd, T.D., Deelman, P.W., Holabird, K.S., Kiselev, A.A., Alvarado-Rodriguez, I., Ross, R.S., Schmitz, A.E., Sokolich, M., Watson, C.A., Gyure, M.F., Hunter, A.T.: Coherent singlet-triplet oscillations in a silicon-based double quantum dot. Nature 481, 344–347 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Bluhm, H., Foletti, S., Neder, I., Rudner, M., Mahalu, D., Umansky, V., Yacoby, A.: Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 \(\mu \)s. Nat. Phys. 7, 109–113 (2011)CrossRefGoogle Scholar
  6. 6.
    Tyryshkin, A., Tojo, S., Morton, J., Riemann, H., Abrosimov, N., Becker, P., Pohl, H.J., Schenkel, T., Thewalt, M., Itoh, K., Lyon, S.: Electron spin coherence exceeding seconds in high-purity silicon. Nat. Mater. 11, 143–147 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Li, R., Hu, X., You, J.: Controllable exchange coupling between two singlet-triplet qubits. Phys. Rev. B 86, 205306 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Coish, W., Loss, D.: Singlet-triplet decoherence due to nuclear spins in a double quantum dot. Phys. Rev. B 72, 125337 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Shen, S.Q., Wang, Z.: Phase separation and charge ordering in doped manganite perovskites: projection perturbation and mean-field approaches. Phys. Rev. B 61, 9532 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Morton, J.J.L., McCamey, D.R., Eriksson, M.A., Lyon, S.A.: Embracing the quantum limit in silicon computing. Nature 479, 345–353 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Kawakami, E., Scarlino, P., Ward, D.R., Braakman, F.R., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A., Vandersypen, L.M.K.: Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 9, 666–670 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Klymenko, M.V., Rogge, S., Remacle, F.: Multivalley envelope function equations and effective potentials for phosphorus impurity in silicon. Phys. Rev. B 92, 195302 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Gamble, J.K., Jacobson, N.T., Nielsen, E., Baczewski, A.D., Moussa, J.E., Montano, I., Muller, R.P.: Multivalley effective mass theory simulation of donors in silicon. Phys. Rev. B 91, 235318 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Saraiva, A.L., Baena, A., Calderón, M.J., Koiller, B.: Theory of one and two donors in silicon. J. Phys. Condens. Matter 27, 154208 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    DiVincenzo, D.P., Bacon, D., Kempe, J., Burkard, G., Whaley, K.B.: Universal quantum computation with the exchange interaction. Nature (London) 408, 339–342 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Taylor, J., Engel, H.A., Dür, W., Yacoby, A., Marcus, C., Zoller, P., Lukin, M.: Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins. Nat. Phys. 1, 177–183 (2005)CrossRefGoogle Scholar
  18. 18.
    Laird, E., Taylor, J., DiVincenzo, D., Marcus, C., Hanson, M., Gossard, A.: Coherent spin manipulation in an exchange-only qubit. Phys. Rev. B 82, 075403 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Levy, J.: Universal quantum computation with spin-1/2 pairs and heisenberg exchange. Phys. Rev. Lett. 89, 147902 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    Kikkawa, J., Awschalom, D.: Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Amasha, S., MacLean, K., Radu, I.P., Zumbühl, D., Kastner, M., Hanson, M., Gossard, A.: Electrical control of spin relaxation in a quantum dot. Phys. Rev. Lett. 100, 046803 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Koppens, F., Nowack, K., Vandersypen, L.: Spin echo of a single electron spin in a quantum dot. Phys. Rev. Lett. 100, 236802 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Barthel, C., Medford, J., Marcus, C., Hanson, M., Gossard, A.: Interlaced dynamical decoupling and coherent operation of a singlet-triplet qubit. Phys. Rev. Lett. 105, 266808 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Tyryshkin, A., Lyon, S., Astashkin, A., Raitsimring, A.: Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 38, 193207 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    Morello, A., Pla, J.J., Zwanenburg, F.A., Chan, K.W., Tan, K.Y., Huebl, H., Möttönen, M., Nugroho, C.D., Yang, C., van Donkelaar, J.A., Alves, A.D.C., Jamieson, D.N., Escott, C.C., Hollenberg, L.C.L., Clark, R.G., Dzurak, A.S.: Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Simmons, C., Prance, J., Bael, B.V., Koh, T., Shi, Z., Savage, D., Lagally, M., Joynt, R., Friesen, M., Coppersmith, S., Eriksson, M.: Tunable spin loading and \(T_1\) of a silicon spin qubit measured by single-shot readout. Phys. Rev. Lett. 106, 156804 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Xiao, M., House, M., Jiang, H.: Measurement of the spin relaxation time of single electrons in a silicon metal-oxide-semiconductor-based quantum dot. Phys. Rev. Lett. 104, 096801 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    van den Berg, J., Nadj-Perge, S., Pribiag, V., Plissard, S., Bakkers, E., Frolov, S., Kouwenhoven, L.: Measurement of the spin relaxation time of single electrons in a silicon metal-oxide-semiconductor-based quantum dot. Phys. Rev. Lett. 110, 066806 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Shi, Z., Simmons, C.B., Prance, J.R., Gamble, J.K., Koh, T.S., Shim, Y.P., Hu, X., Savage, D.E., Lagally, M.G., Eriksson, M.A., Friesen, M., Coppersmith, S.N.: Fast hybrid silicon double-quantum-dot qubit. Phys. Rev. Lett. 108, 140503 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Koh, T.S., Gamble, J.K., Friesen, M., Eriksson, M.A., Coppersmith, S.N.: Pulse-gated quantum-dot hybrid qubit. Phys. Rev. Lett. 109, 250503 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Kim, D., Shi, Z., Simmons, C.B., Ward, D.R., Prance, J.R., Koh, T.S., Gamble, J.K., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A.: Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 511, 70–74 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Kim, D., Ward, D.R., Simmons, C.B., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A.: High-fidelity resonant gating of a silicon-based quantum dot hybrid qubit. NPJ Quantum Inf. 1, 15004 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Thorgrimsson, B., Kim, D., Yang, Y.C., Smith, L.W., Simmons, C.B., Ward, D.R., Foote, R.H., Corrigan, J., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A.: Extending the coherence of a quantum dot hybrid qubit. NPJ Quantum Inf. 3, 32 (2017)ADSGoogle Scholar
  35. 35.
    Rotta, D., Sebastiano, F., Charbon, E., Prati, E.: Quantum information density scaling and qubit operation time constraints of CMOS silicon-based quantum computer architectures. NPJ Quantum Inf. 3, 26 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Rotta, D., De Michielis, M., Ferraro, E., Fanciulli, M., Prati, E.: Maximum density of quantum information in a scalable CMOS implementation of the hybrid qubit architecture. Quantum Inf. Process. 15, 2253–2274 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Ferraro, E., Fanciulli, M., De Michielis, M.: Controlled-NOT gate sequences for mixed spin qubit architectures in a noisy environment. Quantum Inf. Process. 16, 277 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    De Michielis, M., Ferraro, E., Fanciulli, M., Prati, E.: Universal set of quantum gates for double-dot exchange-only spin qubits with intradot coupling. J. Phys. A Math. Theor. 48, 065304 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Ferraro, E., De Michielis, M., Mazzeo, G., Fanciulli, M., Prati, E.: Effective Hamiltonian for the hybrid double quantum dot qubit. Quantum Inf. Process. 13, 1155–1173 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Jefferson, J., Häusler, W.: Effective charge-spin models for quantum dots. Phys. Rev. B 54, 4936 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    Das Sarma, S., Throckmorton, R.E., Wu, Y.L.: Dynamics of two coupled semiconductor spin qubits in a noisy environment. Phys. Rev. B 94, 045435 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    Throckmorton, R.E., Barnes, E., Das Sarma, S.: Environmental noise effects on entanglement fidelity of exchange-coupled semiconductor spin qubits. Phys. Rev. B 95, 085405 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    Wu, Y.L., Das Sarma, S.: Decoherence of two coupled singlet-triplet spin qubits. Phys. Rev. B 96, 165301 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    Mehl, S.: Two-qubit pulse gate for the three-electron double quantum dot qubit. Phys. Rev. B 91, 035430 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    Barnes, E., Rudner, M.S., Martins, F., Malinowski, F.K., Marcus, C.M., Kuemmeth, F.: Filter function formalism beyond pure dephasing and non-Markovian noise in singlet-triplet qubits. Phys. Rev. B 93, 121407(R) (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNR-IMMUnit of Agrate BrianzaAgrate BrianzaItaly
  2. 2.Dipartimento di Scienza dei MaterialiUniversity of Milano BicoccaMilanoItaly

Personalised recommendations