Advertisement

Analytical solution and applications of three qubits in three coupled modes without rotating wave approximation

  • Jian-Song Zhang
  • Liu-Juan Zhang
  • Ai-Xi Chen
  • Mahmoud Abdel-Aty
Article
  • 126 Downloads

Abstract

We study the dynamics of the three-qubit system interacting with multi-mode without rotating wave approximation (RWA). A physical realization of the system without direct qubits interactions with dephasing bath is proposed. It is shown that non-Markovian characters of the purity of the three qubits and the coupling strength of modes are stronger enough the RWA is no longer valid. The influences of the dephasing of qubits and interactions of modes on the dynamics of genuine multipartite entanglement and bipartite correlations of qubits are investigated. The multipartite and bipartite quantum correlations could be generated faster if we increase the coupling strength of modes and the RWA is not valid when the coupling strength is strong enough. The unitary transformations approach adopted here can be extended to other systems such as circuit or cavity quantum electrodynamic systems in the strong coupling regime.

Keywords

Quantum correlation Three-qubit system Dephasing 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11365009 and 11065007) and the Scientific Research Foundation of Jiangxi (Grant Nos. 20151BAB202020 and 20161BBE50069).

References

  1. 1.
    Agarwal, G.S.: Quantum Optics. Cambridge University Press, Cambridge (2013)zbMATHGoogle Scholar
  2. 2.
    Holstein, T.: Studies of polaron motion: Part I. The molecular-crystal model. Ann. Phys. 8, 325–342 (1959)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  4. 4.
    Larson, J., Moya-Cessa, H.: Rabi oscillations in a quantum dot-cavity system coupled to a nonzero temperature phonon bath. Phys. Scr. 77, 065704 (2008)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Zhang, J.S., Chen, A.X.: Thermal effects on bipartite and multipartite correlations in fiber coupled cavity arrays. J. Opt. Soc. Am. B 31, 1126–1131 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Zhang, J.S., Chen, A.X.: Enhancement of genuine multipartite entanglement and purity of three qubits under decoherence via bang–bang pulses with finite period. Quantum Inf. Process. 15, 3257–3271 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Wu, Y., Yang, X.: Jaynes–Cummings model for a trapped ion in any position of a standing wave. Phys. Rev. Lett. 78, 3086–3088 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Scully, M., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  9. 9.
    McKeever, J., Buck, J.R., Boozer, A.D., Kimble, H.J.: Determination of the number of atoms trapped in an optical cavity. Phys. Rev. Lett. 93, 143601 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Hennessy, K., Badolato, A., Winger, M., Gerace, D., Atatüre, M., Gulde, S., Fält, S., Hu, E.L., Imamog brevelu, A.: Quantum nature of a strongly coupled single quantum dot-cavity system. Nature (London) 445, 896–899 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Irish, E.K., Gea-Banacloche, J., Martin, I., Schwab, K.C.: Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator. Phys. Rev. B 72, 195410 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Bloch, F., Siegert, A.: Magnetic resonance for nonrotating fields. Phys. Rev. 57, 522–524 (1940)ADSCrossRefGoogle Scholar
  13. 13.
    Lizuain, I., Muga, J.G., Eschner, J.: Vibrational Bloch–Siegert effect in trapped ions. Phys. Rev. A 77, 053817 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Sornborger, A.T., Cleland, A.N., Geller, M.R.: Superconducting phase qubit coupled to a nanomechanical resonator: beyond the rotating-wave approximation. Phys. Rev. A 70, 052315 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Zueco, D., Reuther, G.M., Kohler, S., Hanggi, P.: Qubit-oscillator dynamics in the dispersive regime: analytical theory beyond the rotating-wave approximation. Phys. Rev. A 80, 033846 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Chen, Q.H., Yang, Y., Liu, T., Wang, K.L.: Entanglement dynamics of two independent Jaynes–Cummings atoms without the rotating-wave approximation. Phys. Rev. A 82, 052306 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Hausinger, J., Grifoni, M.: Qubit-oscillator system: an analytical treatment of the ultrastrong coupling regime. Phys. Rev. A 82, 062320 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Agarwal, G.S., Rafsanjani, S.M.H., Eberly, J.H.: Tavis-Cummings model beyond the rotating wave approximation: quasidegenerate qubits. Phys. Rev. A 85, 043815 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Liao, J.Q., Huang, J.F., Tian, L.: Generation of macroscopic Schrödinger-cat states in qubit-oscillator systems. Phys. Rev. A 93, 033853 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Braak, D.: Integrability of the Rabi model. Phys. Rev. Lett. 107, 100401 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Cárdenas, P.C., Teixeira, W.S., Semião, F.L.: Non-Markovian qubit dynamics in a circuit-QED setup. Phys. Rev. A 91, 022122 (2015)CrossRefGoogle Scholar
  22. 22.
    Cárdenas, P.C., Teixeira, W.S., Semião, F.L.: Coupled modes locally interacting with qubits: critical assessment of the rotating-wave approximation. Phys. Rev. A 95, 042116 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)CrossRefzbMATHGoogle Scholar
  24. 24.
    Barnett, S.M.: Quantum Information. Oxford University Press, New York (2009)zbMATHGoogle Scholar
  25. 25.
    Jungnitsch, B., Moroder, T., Gühne, O.: Taming multiparticle entanglement. Phys. Rev. Lett. 106, 190502 (2011)ADSCrossRefGoogle Scholar
  26. 26.
  27. 27.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Yu, T., Eberly, J.H.: Sudden death of entanglement. Science (London) 323, 598–601 (2009)ADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    Zhang, J.S., Chen, A.X.: Controlling sudden transitions of bipartite quantum correlations under dephasing via dynamical decoupling. J. Phys. B At. Mol. Opt. Phys. 47, 215502 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070–1091 (1999)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen, A., Sen, U., Synak-Radtke, B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    Niset, J., Cerf, N.J.: Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A 74, 052103 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefzbMATHGoogle Scholar
  37. 37.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899–6905 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Zhang, J.S., Chen, L., Abdel-Aty, M., Chen, A.X.: Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime. Eur. Phys. J. D 66, 2 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acin, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jian-Song Zhang
    • 1
  • Liu-Juan Zhang
    • 1
  • Ai-Xi Chen
    • 2
    • 3
  • Mahmoud Abdel-Aty
    • 4
    • 5
    • 6
  1. 1.Department of Applied PhysicsEast China Jiaotong UniversityNanchangPeople’s Republic of China
  2. 2.Department of PhysicsZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China
  3. 3.Institute for Quantum ComputingUniversity of WaterlooOntarioCanada
  4. 4.Applied Science UniversitySitraBahrain
  5. 5.Zewail City of Science and TechnologyGizaEgypt
  6. 6.Sohag UniversitySohagEgypt

Personalised recommendations