Quantum metrology of phase for accelerated two-level atom coupled with electromagnetic field with and without boundary

  • Ying Yang
  • Xiaobao Liu
  • Jieci Wang
  • Jiliang JingEmail author


We study how to improve the precision of the quantum estimation of phase for an uniformly accelerated atom in fluctuating electromagnetic field by reflecting boundaries. We find that the precision decreases with increases of the acceleration without the boundary. With the presence of a reflecting boundary, the precision depends on the atomic polarization, position and acceleration, which can be effectively enhanced compared to the case without boundary if we choose the appropriate conditions. In particular, with the presence of two parallel reflecting boundaries, we obtain the optimal precision for atomic parallel polarization and the special distance between two boundaries, as if the atom were shielded from the fluctuation.


Quantum Fisher information Acceleration Reflecting boundary 



This work is supported by the National Natural Science Foundation of China under Grant Nos. 11475061 and 11305058. X. Liu was supported by the Hunan Provincial Innovation Foundation For Postgraduate under Grant No. CX2017B175.


  1. 1.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96(1), 010401 (2006)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Roy, S.M., Braunstein, S.L.: Exponentially enhanced quantum metrology. Phys. Rev. Lett. 100(22), 220501 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54(6), R4649 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Bužek, V., Derka, R., Massar, S.: Optimal quantum clocks. Phys. Rev. Lett. 82(10), 2207 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Peters, A., Chung, K.Y., Chu, S.: Measurement of gravitational acceleration by dropping atoms. Nature (London) 400, 849–852 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Jozsa, R., Abrams, D.S., Dowling, J.P., Williams, C.P.: Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett. 85(9), 2010 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Tian, Z.H., Wang, J.C., Fan, H., Jing, J.L.: Relativistic quantum metrology in open system dynamics. Sci. Rep. 5, 7946 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Wang, J.C., Tian, Z.H., Jing, J.L.: Quantum metrology and estimation of Unruh effect. Sci. Rep. 4, 7195 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Yurke, B., McCall, S.L., Klauder, J.R.: SU (2) and SU (1, 1) interferometers. Phys. Rev. A 33(6), 4033 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    Dowling, J.P.: Correlated input-port, matter-wave interferometer: quantum-noise limits to the atom-laser gyroscope. Phys. Rev. A 57(6), 4736 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Kok, P., Braunstein, S.L., Dowling, J.P.: Quantum lithography, entanglement and Heisenberg-limited parameter estimation. J. Opt. B 6(8), S811 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Lucien, J.B.: Measurement of gravity at sea and in the air. Rev. Geophys. 5(4), 477–526 (1967)ADSCrossRefGoogle Scholar
  14. 14.
    Poli, N., Wang, F.Y., Tarallo, M.G., Alberti, A., Prevedelli, M., Tinox, G.M.: Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. Phys. Rev. Lett. 106(3), 038501 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Wang, J.C., Tian, Z.H., Jing, J.L., Fan, H.: Influence of relativistic effects on satellite-based clock synchronization. Phys. Rev. D 93(6), 065008 (2016)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)zbMATHGoogle Scholar
  17. 17.
    Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. Edizioni della Normale, Pisa (1982)zbMATHGoogle Scholar
  18. 18.
    Hübner, M.: Explicit computation of the Bures distance for density matrices. Phys. Lett. A 163(4), 239–242 (1992)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Hübner, M.: Computation of Uhlmann’s parallel transport for density matrices and the Bures metric on three-dimensional Hilbert space. Phys. Lett. A 179(4–5), 226–230 (1993)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72(22), 3439 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14(4), 870 (1976)ADSCrossRefGoogle Scholar
  22. 22.
    Birrel, N.D., Davis, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)CrossRefGoogle Scholar
  23. 23.
    Crispino, L.C.B., Higuchi, A., Matsas, G.E.A.: The Unruh effect and its applications. Rev. Mod. Phys. 80(3), 787 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tian, Z.H., Jing, J.L.: Measurement-induced-nonlocality via the Unruh effect. Ann. Phys. 333, 76–89 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Jia, L.J., Tian, Z.H., Jing, J.L.: Entropic uncertainty relation in de Sitter space. Ann. Phys. 353, 37–47 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Jin, Y., Yu, H.: Electromagnetic shielding in quantum metrology. Phy. Rev. A 91(2), 022120 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Inhibiting decoherence of two-level atom in thermal bath by presence of boundaries. Quantum Inf. Process. 15(9), 3677–3694 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. 366, 102–112 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, J.C., Jing, J.L.: Quantum decoherence in noninertial frames. Phys. Rev. A 82(3), 032324 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Tian, Z.H., Jing, J.L.: How the Unruh effect affects transition between classical and quantum decoherences. Phys. Lett. B 707(2), 264–271 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Wang, J. C., Tian, Z. H., Jing, J. L., Fan, H.: Irreversible degradation of quantum coherence under relativistic motion. arXiv: 1601.03238
  32. 32.
    Rosenkranz, M., Jaksch, D.: Parameter estimation with cluster states. Phys. Rev. A 79(2), 022103 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Huelga, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B., Cirac, J.I.: Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79(20), 3865 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    Ulam-Orgikh, D., Kitagawa, M.: Spin squeezing and decoherence limit in Ramsey spectroscopy. Phys. Rev. A 64(5), 052106 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    Knysh, S., Smelyanskiy, V.N., Durkin, G.A.: Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state. Phys. Rev. A 83(2), 021804 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Kołodynński, J., Demkowicz-Dobrzanski, R.: Phase estimation without a priori phase knowledge in the presence of loss. Phys. Rev. A 82(5), 053804 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Tian, Z.H., Wang, J.C., Fan, H., Jing, J.L.: Relativistic quantum metrology in open system dynamics. Sci. Rep. 5, 7946 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Tian, Z.H., Jing, J.L.: Dynamics and quantum entanglement of two-level atoms in de Sitter spacetime. Ann. Phys. 350, 1–13 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87(2), 022337 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Compagno, G., Passante, R., Persico, F.: Atom-Field Interactions and Dressed Atoms. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  41. 41.
    Zanardi, P., Paris, M.G.A., C, L.: Quantum criticality as a resource for quantum estimation. Phys. Rev. A 78(4), 042105 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys 17, 821 (1976)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Greiner, W., Reinhardt, J.: Field Quantization. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  45. 45.
    Brown, L.S., Maclay, G.J.: Vacuum stress between conducting plates: an image solution. Phys. Rev. 184(5), 1272 (1969)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and ApplicationsHunan Normal UniversityChangshaPeople’s Republic of China

Personalised recommendations