Advertisement

Mediation of entanglement and nonlocality of a single fermion

  • Bertúlio de Lima Bernardo
Article
  • 80 Downloads

Abstract

Entanglement is one of the most distinctive features of quantum mechanics and is now considered a fundamental resource in quantum information processing, such as in the protocols of quantum teleportation and quantum key distribution. In general, to extract its power in a useful form, it is necessary to generate entanglement between two or more quantum systems separated by long distances, which is not an easy task due to its fragility under environmental disturbance. Here, we propose a method to create entanglement between two distant fermionic particles, which never interact directly by using a third fermion to mediate the correlation. The protocol initiates with three indistinguishable fermions in a separable state, which are allowed to interact in pairs according to the Hong–Ou–Mandel effect. As a result, it is demonstrated that bipartite maximally entangled states can be generated with an efficiency of about 56%, which makes the method a potential candidate for practical quantum information applications. Furthermore, we use the same protocol to show how the mediator fermion exhibits nonlocal properties, giving a new insight on the long-standing discussion about nonlocality of a single particle.

Keywords

Entanglement mediation Single-particle nonlocality Fermion interferometry 

Notes

Acknowledgements

The author acknowledges financial support from the Brazilian Funding Agency CNPq, Grant Number 309292/2016-6.

References

  1. 1.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Bell, J.S.: On the Einstein-Poldolsky-Rosen paradox. Physics 1, 195 (1964)Google Scholar
  3. 3.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: Event-ready-detectors Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    Sangouard, N., Simon, C., De Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Hensen, B., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    Lim, Y.L., Beige, A.: Generalised Hong–Ou–Mandel experiments with bosons and fermions. New J. Phys. 7, 155 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Dunningham, J., Vedral, V.: Nonlocality of a single particle. Phys. Rev. Lett. 99, 180404 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bose, S., Home, D.: Generic entanglement generation, quantum statistics, and complementarity. Phys. Rev. Lett. 88, 050401 (2002)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Zukowski, M., Zeilinger, A., Horne, M.A.: Realizable higher-dimensional two-particle entanglements via multiport beam splitters. Phys. Rev. A 55, 2564 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    Gerry, C.C., Knigh, P.L.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)Google Scholar
  17. 17.
    Dowling, J.: Quantum optical metrology–the lowdown on high-N00N states. Contemp. Phys. 49, 125 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Boto, A.N., Kok, P., Abrams, D.S., Braunstein, S.L., Williams, C.P., Dowling, J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett 85, 2733 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    D’Angelo, M., Chekhova, M.V., Shih, Y.: Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Mitchell, M.W., Lundeen, J.S., Steinberg, A.M.: Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Eisenberg, H.S., Hodelin, J.F., Khoury, G., Bouwmeester, D.: Multiphoton path entanglement by non-local bunching. Phys. Rev. Lett. 94, 090502 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Nagata, T., Okamoto, R., O’Brien, J.L., Sasaki, K., Takeuchi, S.: Beating the standard quantum limit with four-entangled photons. Science 316, 726 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Di Martino, G., et al.: Observation of quantum interference in the plasmonic Hong–Ou–Mandel effect. Phys. Rev. Appl. 1, 034004 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Fakonas, J.S., Lee, H., Kelaita, Y., Atwater, H.: Two-plasmon quantum interference. Nat. Photonics 8, 317 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Lopes, R., et al.: Atomic Hong–Ou–Mandel experiment. Nature 520, 66 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Toyoda, K., Hiji, R., Noguchi, A., Urabe, S.: Hong–Ou–Mandel interference of two phonons in trapped ions. Nature 527, 74 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Henny, M., et al.: The fermionic Hanbury Brown and Twiss experiment. Science 284, 296 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    Liu, R.C., Odom, B., Yamamoto, Y., Tarucha, S.: Quantum interference in electron collision. Nature 391, 263 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    Oliver, W.D., et al.: Hanbury Brown and Twiss-type experiment with electrons. Science 284, 299 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    Bernardo, B.L.: How a single photon can mediate entanglement between two others. Ann. Phys. 373, 80 (2016)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Bernardo, B.L., Canabarro, A., Azevedo, S.: How a single particle simultaneously modifies the physical reality of two distant others: a quantum nonlocality and weak value study. Sci. Rep. 7, 39767 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    Irvine, W.T.M., Hodelin, J.F., Simon, C., Bouwmeester, D.: Realization of Hardy’s thought experiment with photons. Phys. Rev. Lett. 95, 030401 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Penrose, R.: Uncertainty in quantum mechanics: faith or fantasy? Phil. Trans. R. Soc. A 369, 4864 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27 (2011)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Feynman, R.P., Leighton, L.B., Sands, M.: The Feynman Lectures on Physics, vol. 3. Addison-Wesley, Boston (1963)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil
  2. 2.Departamento de FísicaUniversidade Federal de Campina GrandeCampina GrandeBrazil

Personalised recommendations