Advertisement

Monogamy and polygamy for multi-qubit W-class states using convex-roof extended negativity of assistance and Rényi-\(\alpha \) entropy

  • Yanying Liang
  • Xiufang Feng
  • Wei Chen
Article
  • 125 Downloads

Abstract

We present some new analytical polygamy inequalities satisfied by the x-th power of convex-roof extended negativity of assistance with \(x\ge 2\) and \(x\le 0\) for multi-qubit generalized W-class states. Using Rényi-\(\alpha \) entropy (R\(\alpha \)E) with \(\alpha \in [(\sqrt{7}-1)/2, (\sqrt{13}-1)/2]\), we prove new monogamy and polygamy relations. We further show that the monogamy inequality also holds for the \(\mu \)th power of Rényi-\(\alpha \) entanglement. Moreover, we study two examples in multipartite higher-dimensional system for those new inequalities.

Keywords

Polygamy inequality W-class states CRENoA Rényi-\(\alpha \) entropy 

Notes

Acknowledgements

This work is supported by the NSFC 11571119 and NSFC 11475178.

References

  1. 1.
    Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92, 167902 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Breuer, H.P.: Separability criteria and bounds for entanglement measures. J. Phys. A Math. Gen. 39, 11847 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Breuer, H.P.: Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett. 97, 080501 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    de Vicente, J.I.: Lower bounds on concurrence and separability conditions. Phys. Rev. A 75, 052320 (2007)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Optimal entanglement witnesses based on local orthogonal observables. Phys. Rev. A 76, 012334 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Renes, J.M., Grassl, M.: Generalized decoding, effective channels, and simplified security proofs in quantum key distribution. Phys. Rev. A 74, 022317 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Bai, Y.K., Ye, M.Y., Wang, Z.D.: Entanglement monogamy and entanglement evolution in multipartite systems. Phys. Rev. A 80, 044301 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Kim, J.S., Das, A., Sanders, B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A 79, 012329 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Ou, Y.C.: Violation of monogamy inequality for higher-dimensional objects. Phys. Rev. A 75, 034305 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lee, S., Chi, D.P., Oh, S.D., Kim, J.: Convex-roof extended negativity as an entanglement measure for bipartite quantum systems. Phys. Rev. A 68, 062304 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Horodecki, R., Horodecki, P., Horodecki, M.: Separability of mixed states: necessary and sufficient conditions. Phys. Rev. A 210, 377 (1996)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Terhal, B.M.: Detecting quantum entanglement. J. Theor. Comput. Sci. 287, 313 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lévay, P., Nagy, S., Pipek, J.: Elementary formula for entanglement entyopies of fermionic systems. Phys. Rev. A 72, 022302 (2005)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Rungta, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Yu, C.S., Song, H.S.: Entanglement monogamy of tripartite quantum states. Phys. Rev. A 77, 032329 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Luo, Y., Li, Y.M.: Monogamy of \(\alpha \)th power entanglement measurement in qubit systems. Ann. Phys. 362, 511–520 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kim, J.S.: Strong monogamy of quantum entanglement for multiqubit W-class states. Phys. Rev. A 90, 062306 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Hughston, L.P., Jozsa, R., Wootters, W.K.: A complete classification of quantum ensembles having a giving density matrix. Phys. Lett. A 49, 18314 (1993)Google Scholar
  28. 28.
    Kim, J.S., Das, A., Sanders, B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A 79, 012329 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Song, W., Bai, Y.K., Yang, M., Cao, Z.L.: General monogamy relation of multi-qubit system in terms of Squared Rényi-\(\alpha \) entanglement. Phys. Rev. A 93, 022306 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Kim, J.S., Sanders, B.C.: Monogamy and polygamy for multi-qubit entanglement using Rényi entropy. J. Phys. A Math. Theor. 43, 445305 (2010)CrossRefzbMATHGoogle Scholar
  31. 31.
    Song, W., Zhou, J., Yang, M., Zhao, J.L., Li, D.C., Zhang, L.H., Cao, Z.L.: Polygamy relation for the Rényi-\(\alpha \) entanglement of assistance in multi-qubit systems, arxiv:1703.02858
  32. 32.
    Ou, Y.: Violation of monogamy inequality for higher-dimensional objects. Phys. Rev. A 75, 034305 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Luo, Y., Tian, T., Shao, L.H., Li, Y.M.: General monogamy of Tsallis-q entropy entanglement in multiqubit systems. Phys. Rev. A 93, 062340 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of MathematicsSouth China University of TechnologyGuangzhouChina
  2. 2.School of Computer Science and Network SecurityDongguan University of TechnologyDongguanChina

Personalised recommendations