Towards quantum reversible ternary coded decimal adder
- 227 Downloads
- 1 Citations
Abstract
Quantum ternary logic is a promising emerging technology for the future quantum computing. Ternary reversible logic circuit design has potential advantages over the binary ones like its logarithmic reduction in the number of qudits. In reversible logic all computations are done in an invertible fashion. In this paper, we propose a new quantum reversible ternary half adder with quantum cost of only 7 and a new quantum ternary full adder with a quantum cost of only 14. We termed it QTFA. Then we propose 3-qutrit parallel adders. Two different structures are suggested: with and without input carry. Next, we propose quantum ternary coded decimal (TCD) detector circuits. Two different approaches are investigated: based on invalid numbers and based on valid numbers. Finally, we propose the quantum realization of TCD adder circuits. Also here, two approaches are discussed. Overall, the proposed reversible ternary full adder is the best between its counterparts comparing the figures of merits. The proposed 3-qutrit parallel adders are compared with the existing designs and the improvements are reported. On the other hand, this paper suggested the quantum reversible TCD adder designs for the first time. All the proposed designs are realized using macro-level ternary Toffoli gates which are built on the top of the ion-trap realizable ternary 1-qutrit gates and 2-qutrit Muthukrishnan–Stroud gates.
Keywords
Quantum computing Reversible logic Ternary logic Ternary coded decimal adder Ion-trap Ternary reversible full adder QTFAReferences
- 1.Landauer, R.: Irreversibility and heat generation in the computation process. IBM J. Res. Dev. 5, 183–191 (1961)CrossRefzbMATHGoogle Scholar
- 2.Bennett, C.: Logical reversibility of computations. IBM J. Res. Dev. 17, 525–532 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
- 3.Gershenfeld, N.: Signal entropy and the thermodynamics of computation. IBM Syst. J. 35(3.4), 577–586 (1996)CrossRefGoogle Scholar
- 4.Zhirnov, V.V., Cavin, R.K., Hutchby, J.A., Bourianoff, G.I.: Limits to binary logic switch scaling–a Gedanken model. Proc. IEEE 91(11), 1934–1939 (2003)CrossRefGoogle Scholar
- 5.Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
- 6.Wille, R., et al.: SyReC: a hardware description language for the specification and synthesis of reversible circuits. Integr. VLSI J. 53, 39–53 (2016)CrossRefGoogle Scholar
- 7.Anderlini, M., Lee, P.J., Brown, B.L., Sebby-Strabley, J., Phillips, W.D., Porto, J.V.: Controlled exchange interaction between pairs of neutral atoms in an optical lattice (2007). arXiv preprint arXiv:0708.2073
- 8.Plantenberg, J.H., De Groot, P.C., Harmans, C.J.P.M., Mooij, J.E.: Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nature 447(7146), 836 (2007)ADSCrossRefGoogle Scholar
- 9.Fedorov, A., Steffen, L., Baur, M., da Silva, M.P., Wallraff, A.: Implementation of a Toffoli gate with superconducting circuits. arXiv preprint (2011). arXiv:1108.3966
- 10.White, A.G., Gilchrist, A., Pryde, G.J., O’Brien, J.L., Bremner, M.J., Langford, N.K.: Measuring two-qubit gates. JOSA B 24(2), 172–183 (2007)Google Scholar
- 11.Gao, W.B., Xu, P., Yao, X.C., Gühne, O., Cabello, A., Lu, C.Y., Pan, J.W.: Experimental realization of a controlled-NOT gate with four-photon six-qubit cluster states. Phys. Rev. Lett. 104(2), 020501 (2010)ADSCrossRefGoogle Scholar
- 12.Khan, M.H., Perkowski, M.A.: Quantum ternary parallel adder/subtractor with partially-look-ahead carry. J. Syst. Archit. 53(7), 453 (2007)CrossRefGoogle Scholar
- 13.Muthukrishnan, A., Stroud Jr., C.R.: Multivalued logic gates for quantum computation. Phys. Rev. A 62(5), 052309-1–8 (2000)Google Scholar
- 14.Klimov, A.B., Guzman, R., Retamal, J.C., Saavedra, C.: Qutrit quantum computer with trapped ions. Phys. Rev. A 67(6), 062313-1–7 (2003)Google Scholar
- 15.McHugh, D., Twamley, J.: Trapped-ion qutrit spin molecule quantum computer. New J. Phys. 7(1), 174-1–9 (2005)Google Scholar
- 16.Yang, G., Song, X., Perkowski, M., Wu, J.: Realizing ternary quantum switching networks without ancilla bits. J. Phys. A: Math. Gen. 38, 1–10 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
- 17.Miller, D.M., Thornton, M.A.: Multiple valued logic: concepts and representations. Synth. Lect. Dig. Circuits Syst. 2(1), 1–127 (2007)CrossRefGoogle Scholar
- 18.De Vos, A., van Rentergem, Y.: Multiple-valued reversible logic circuits. J. Mult.-Valued Log. Soft Comput. 15(4–5), 489–505 (2009)zbMATHGoogle Scholar
- 19.Houshmand, P.: Haghparast, Majid: Design of a novel quantum reversible ternary up-counter. Int. J. Quantum Inf. 13(05), 1550038 (2015)CrossRefzbMATHGoogle Scholar
- 20.Monfared, A.T., Haghparast, M.: Novel design of quantum/reversible ternary comparator circuits. J. Comput. Theor. Nanosci. 12(12), 5670–5673 (2015)CrossRefGoogle Scholar
- 21.Monfared, A.T.: Design of new quantum/reversible ternary subtractor circuits. J. Circuits Syst. Comput. 25(02), 1650014 (2016)CrossRefGoogle Scholar
- 22.Monfared, A.T., Haghparast, M.: Design of novel quantum/reversible ternary adder circuits. Int. J. Electron. Lett. 5(2), 149–157 (2017)CrossRefGoogle Scholar
- 23.Haghparast, M.: Monfared, Asma Taheri: Novel quaternary quantum decoder, multiplexer and demultiplexer circuits. Int. J. Theor. Phys. 56(5), 1694–1707 (2017)CrossRefzbMATHGoogle Scholar
- 24.Haghparast, M, Dousttalab, N: On design of new reversible quaternary flip-flops. Int. J. Quantum Inf. 15(4), 1750024-1–1750024-11 (2017)Google Scholar
- 25.Chau, H.F.: Correcting quantum errors in higher spin systems. Phys. Rev. A 55(2), R839 (1997)ADSCrossRefGoogle Scholar
- 26.Khan, M.H.A.: GFSOP-based ternary quantum logic synthesis. In: Optics and Photonics for Information Processing IV, Proceedings of SPIE, vol. 7797 (2010)Google Scholar
- 27.Zadeh, R.P., Haghparast, M.: A new reversible/quantum ternary comparator. Aust. J. Basic Appl. Sci. 5(12), 2348–2355 (2011)Google Scholar
- 28.Raja, M.K., Koppala, N.: Modeling and implementation of reliable ternary arithmetic and logic unit design using Vhdl. Int. J. Eng. Res. Appl. 4(6), 259–264 (2014)Google Scholar
- 29.Nisbet-Jones, P.B., Dilley, J., Holleczek, A., Barter, O., Kuhn, A.: Photonic qubits, qutrits and ququads accurately prepared and delivered on demand. New J. Phys. 15(5), 053007 (2013)ADSCrossRefGoogle Scholar
- 30.Bocharov, A., Roetteler, M., Svore, K.M.: Factoring with qutrits: Shor’s algorithm on ternary and metaplectic quantum architectures. Phys. Rev. A 96(1), 012306 (2017)ADSCrossRefGoogle Scholar
- 31.Thew, R. T., Acin, A., Zbinden, H., Gisin, N.: Quantum Information and Computation, in print. arXiv preprint arXiv:quant-ph/0512125
- 32.Langford, N.K., Dalton, R.B., Harvey, M.D., O’Brien, J.L., Pryde, G.J., Gilchrist, A., White, A.G.: Measuring entangled qutrits and their use for quantum bit commitment. Phys. Rev. Lett. 93(5), 053601 (2004)ADSCrossRefGoogle Scholar
- 33.Molina-Terriza, G., Vaziri, A., Řeháček, J., Hradil, Z., Zeilinger, A.: Triggered qutrits for quantum communication protocols. Phys. Rev. Lett. 92(16), 167903 (2004)ADSCrossRefGoogle Scholar
- 34.Howell, J.C., Lamas-Linares, A., Bouwmeester, D.: Experimental violation of a spin-1 Bell inequality using maximally entangled four-photon states. Phys. Rev. Lett. 88(3), 030401 (2002)ADSCrossRefGoogle Scholar
- 35.Ralph, T.C., Resch, K.J., Gilchrist, A.: Efficient Toffoli gates using qudits. Phys. Rev. A 75(2), 022313 (2007)ADSCrossRefGoogle Scholar
- 36.Bartlett, S.D., de Guise, H., Sanders, B.C.: Quantum encodings in spin systems and harmonic oscillators. Phys. Rev. A 65(5), 052316 (2002)ADSCrossRefGoogle Scholar
- 37.Lanyon, B.P., Barbieri, M., Almeida, M.P., Jennewein, T., Ralph, T.C., Resch, K.J., White, A.G.: Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5(2), 134 (2009)CrossRefGoogle Scholar
- 38.Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88(4), 040404 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 39.Kaszlikowski, D., Kwek, L.C., Chen, J.L., Żukowski, M., Oh, C.H.: Clauser-Horne inequality for three-state systems. Phys. Rev. A 65(3), 032118 (2002)ADSCrossRefGoogle Scholar
- 40.Cohen, I., Retzker, A.: Proposal for verification of the haldane phase using trapped ions. Phys. Rev. Lett. 112(4), 040503 (2014)ADSCrossRefGoogle Scholar
- 41.Bruß, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88(12), 127901 (2002)ADSCrossRefGoogle Scholar
- 42.Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88(12), 127902 (2002)ADSCrossRefGoogle Scholar
- 43.Mohammadi, M., Eshghi, M., Haghparast, M.: On design of multiple-valued sequential reversible circuits for nanotechnology based systems. In: Proceedings of the IEEE Region 10 Conference (TENCON) (2008)Google Scholar
- 44.Khan, M.H.A.: Design of ternary reversible sequential circuits. In: 2014 International Conference on Electrical and Computer Engineering (ICECE), IEEE (2014)Google Scholar
- 45.Deibuk, V.G., Biloshytskyi, A.V.: Design of a ternary reversible/quantum adder using genetic algorithm. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 7(9), 38 (2015)Google Scholar
- 46.Lisa, N.J., Babu, H.M.H.: Design of a compact ternary parallel adder/subtractor circuit in quantum computing. In: 2015 IEEE International Symposium on Multiple-Valued Logic (ISMVL), pp. 36–41. May 2015Google Scholar
- 47.Khan, M.H., Perkowski, M.: Quantum realization of ternary encoder and decoder. In: Proceedings of the 7th International Symposium on Representations and Methodology of Future Computing Technologies (RM2005), Tokyo, Sept 2005Google Scholar
- 48.Khan, M.H.: Design of reversible/quantum ternary multiplexer and demultiplexer. Eng. Lett. 13(2), 65–69 (2006)Google Scholar
- 49.Khan, M.H.: Design of reversible/quantum ternary comparator circuits. Eng. Lett. 16(2), 178–184 (2008)Google Scholar
- 50.Deibuk, V., Biloshytskyi, A.: Genetic synthesis of new reversible/quantum ternary comparator. Adv. Electr. Comput. Eng. 15(3), 147–152 (2015)CrossRefGoogle Scholar
- 51.Khan, M.H.A., Perkowski, M.A., Kerntopf, P.: Multi-output Galois field sum of products synthesis with new quantum cascades. In: 33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings. IEEE (2003)Google Scholar
- 52.De Vos, A., Birger, R., Storme, L.: Generating the group of reversible logic gates. J. Phys. A: Math. Gen. 35(33), 7063 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 53.Miller, D.M., Dueck, G.W., Maslov, D.: A synthesis method for MVL reversible logic [multiple value logic]. In: Proceedings. 34th International Symposium on Multiple-Valued Logic, 2004. pp. 74–80. May 2004Google Scholar
- 54.Miller, D.M., Maslov, D., Dueck, G.W.: Synthesis of quantum multiple-valued circuits. J. Mult.-Valued Log. Soft Comput. 12, 5–6 (2006)zbMATHMathSciNetGoogle Scholar
- 55.Dubrova, E.V., Muzio, J.C.: Generalized Reed-Muller canonical form for a multiple-valued algebra. Int. J. Mult. Valued Log. 1, 65–84 (1996)zbMATHGoogle Scholar
- 56.Mohammadi, M., Niknafs, A., Eshghi, M.: Controlled gates for multi-level quantum computation. Quantum Inf. Process. 10(2), 241–256 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
- 57.Mohammadi, M.: Radix-independent, efficient arrays for multi-level n-qudit quantum and reversible computation. Quantum Inf. Process. 14(8), 2819–2832 (2015)ADSCrossRefzbMATHMathSciNetGoogle Scholar
- 58.Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)ADSCrossRefGoogle Scholar
- 59.Mounika, J., Ramanujam, K., Jahangir, M.Z.: CMOS based design and simulation of ternary full adder and Ternary Coded Decimal (TCD) adder circuit. In: 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1–5. March 2016Google Scholar
- 60.Khan, M., Rice, J.E.: Synthesis of reversible logic functions using ternary Max-Min algebra. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1674–1677. May 2016Google Scholar