Advertisement

An optimal discrimination of two mixed qubit states with a fixed rate of inconclusive results

  • Donghoon Ha
  • Younghun Kwon
Article

Abstract

In this paper we consider the optimal discrimination of two mixed qubit states for a measurement that allows a fixed rate of inconclusive results. Our strategy is to transform the problem of two qubit states into a minimum error discrimination for three qubit states by adding a specific quantum state \(\rho _{0}\) and a prior probability \(q_{0}\), which behaves as an inconclusive degree. First, we introduce the beginning and the end of practical interval of inconclusive result, \(q_{0}^{(0)}\) and \(q_{0}^{(1)}\), which are key ingredients in investigating our problem. Then we obtain the analytic form of them. Next, we show that our problem can be classified into two cases \(q_{0}=q_{0}^{(0)}\) (or \(q_{0}=q_{0}^{(1)}\)) and \(q_{0}^{(0)}<q_{0}<q_{0}^{(1)}\). In fact, by maximum confidences of two qubit states and non-diagonal element of \(\rho _{0}\), our problem is completely understood. We provide an analytic solution of our problem when \(q_{0}=q_{0}^{(0)}\) (or \(q_{0}=q_{0}^{(1)}\)). However, when \(q_{0}^{(0)}<q_{0}<q_{0}^{(1)}\), we rather supply the numerical method to find the solution, because of the complex relation between inconclusive degree and corresponding failure probability. Finally we confirm our results using previously known examples.

Keywords

Quantum state discrimination Inconclusive state discrimination Minimum error discrimination Maximum confidence Inconclusive degree 

Notes

Acknowledgements

This work is supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF2015R1D1A1A01060795) and Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government (MSIP) (No. R0190-15-2028, PSQKD).

References

  1. 1.
    Chefles, A.: Quantum state discrimination. Contemp. Phys. 41, 401 (2000)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photon. 1, 238 (2009)CrossRefGoogle Scholar
  3. 3.
    Bergou, J.A.: Discrimination of quantum states. J. Mod. Opt. 57, 160 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bae, J., Kwek, L.C.: Quantum state discrimination and its applications. J. Phys. A Math. Theor. 48, 083001 (2015)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)zbMATHGoogle Scholar
  6. 6.
    Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1979)Google Scholar
  7. 7.
    Yuen, H.P., Kennedy, R.S., Lax, M.: Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inf. Theory 21, 125 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Ban, M., Kurokawa, K., Momose, R., Hirota, O.: Optimum measurements for discrimination among symmetric quantum states and parameter estimation. Int. J. Theor. Phys. 36, 1269 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Chou, C.L., Hsu, L.Y.: Minimum-error discrimination between symmetric mixed quantum states. Phys. Rev. A 68, 042305 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Herzog, U.: Minimum-error discrimination between a pure and a mixed two-qubit state. J. Opt. B Quantum Semiclass. Opt. 6, S24 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Samsonov, B.F.: Minimum error discrimination problem for pure qubit states. Phys. Rev. A 80, 052305 (2009)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Deconinck, M.E., Terhal, B.M.: Qubit state discrimination. Phys. Rev. A 81, 062304 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Jafarizadeh, M.A., Mazhari, Y., Aali, M.: The minimum-error discrimination via Helstrom family of ensembles and convex optimization. Quantum Inf. Process. 10, 155 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Khiavi, Y.M., Kourbolagh, Y.A.: Minimum-error discrimination among three pure linearly independent symmetric qutrit states. Quantum Inf. Process. 12, 1255 (2013)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Bae, J., Hwang, W.Y.: Minimum-error discrimination of qubit states: methods, solutions, and properties. Phys. Rev. A 87, 012334 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Bae, J.: Structure of minimum-error quantum state discrimination. New J. Phys. 15, 073037 (2013)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ha, D., Kwon, Y.: Complete analysis for three-qubit mixed-state discrimination. Phys. Rev. A 87, 062302 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Ha, D., Kwon, Y.: Discriminating \(N\)-qudit states using geometric structure. Phys. Rev. A 90, 022330 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Ivanovic, I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A 123, 257 (1987)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    Dieks, D.: Overlap and distinguishability of quantum states. Phys. Lett. A 126, 303 (1988)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    Peres, A.: How to differentiate between non-orthogonal states. Phys. Lett. A 128, 19 (1988)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    Jaeger, G., Shimony, A.: Optimal distinction between two non-orthogonal quantum states. Phys. Lett. A 197, 83 (1995)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Rudolph, T., Spekkens, R.W., Turner, P.S.: Unambiguous discrimination of mixed states. Phys. Rev. A 68, 010301(R) (2003)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    Herzog, U., Bergou, J.A.: Optimum unambiguous discrimination of two mixed quantum states. Phys. Rev. A 71, 050301(R) (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Pang, S., Wu, S.: Optimum unambiguous discrimination of linearly independent pure states. Phys. Rev. A 80, 052320 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Kleinmann, M., Kampermann, H., Bruß, D.: Structural approach to unambiguous discrimination of two mixed quantum states. J. Math. Phys. 51, 032201 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Sugimoto, H., Hashimoto, T., Horibe, M., Hayashi, A.: Complete solution for unambiguous discrimination of three pure states with real inner products. Phys. Rev. A 82, 032338 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Bergou, J.A., Futschik, U., Feldman, E.: Optimal unambiguous discrimination of pure quantum states. Phys. Rev. Lett. 108, 250502 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Ha, D., Kwon, Y.: Analysis of optimal unambiguous discrimination of three pure quantum states. Phys. Rev. A 91, 062312 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Croke, S., Andersson, E., Barnett, S.M., Gilson, C.R., Jeffers, J.: Maximum confidence quantum measurements. Phys. Rev. Lett. 96, 070401 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Chefles, A., Barnett, S.M.: Strategies for discriminating between non-orthogonal quantum states. J. Mod. Opt. 45, 1295 (1998)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Zhang, C.W., Li, C.F., Guo, G.C.: General strategies for discrimination of quantum states. Phys. Lett. A 261, 25 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Fiurášek, J., Ježek, M.: Optimal discrimination of mixed quantum states involving inconclusive results. Phys. Rev. A 67, 012321 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    Eldar, Y.C.: Mixed-quantum-state detection with inconclusive results. Phys. Rev. A 67, 042309 (2003)ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    Herzog, U.: Optimal state discrimination with a fixed rate of inconclusive results: analytical solutions and relation to state discrimination with a fixed error rate. Phys. Rev. A 86, 032314 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Bagan, E., Muñoz-Tapia, R., Olivares-Rentería, G.A., Bergou, J.A.: Optimal discrimination of quantum states with a fixed rate of inconclusive outcomes. Phys. Rev. A 86, 040303(R) (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Nakahira, K., Usuda, T.S., Kato, K.: Finding optimal measurements with inconclusive results using the problem of minimum error discrimination. Phys. Rev. A 91, 022331 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Herzog, U.: Optimal measurements for the discrimination of quantum states with a fixed rate of inconclusive results. Phys. Rev. A 91, 042338 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  40. 40.
    Eldar, Y.C., Megretski, A., Verghese, G.C.: Designing optimal quantum detectors via semidefinite programming. IEEE Trans. Inf. Theory 49, 1007 (2003)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Applied PhysicsHanyang UniversityAnsanRepublic of Korea

Personalised recommendations