# An optimal discrimination of two mixed qubit states with a fixed rate of inconclusive results

- 105 Downloads
- 1 Citations

## Abstract

In this paper we consider the optimal discrimination of two mixed qubit states for a measurement that allows a fixed rate of inconclusive results. Our strategy is to transform the problem of two qubit states into a minimum error discrimination for three qubit states by adding a specific quantum state \(\rho _{0}\) and a prior probability \(q_{0}\), which behaves as an inconclusive degree. First, we introduce the beginning and the end of practical interval of inconclusive result, \(q_{0}^{(0)}\) and \(q_{0}^{(1)}\), which are key ingredients in investigating our problem. Then we obtain the analytic form of them. Next, we show that our problem can be classified into two cases \(q_{0}=q_{0}^{(0)}\) (or \(q_{0}=q_{0}^{(1)}\)) and \(q_{0}^{(0)}<q_{0}<q_{0}^{(1)}\). In fact, by maximum confidences of two qubit states and non-diagonal element of \(\rho _{0}\), our problem is completely understood. We provide an analytic solution of our problem when \(q_{0}=q_{0}^{(0)}\) (or \(q_{0}=q_{0}^{(1)}\)). However, when \(q_{0}^{(0)}<q_{0}<q_{0}^{(1)}\), we rather supply the numerical method to find the solution, because of the complex relation between inconclusive degree and corresponding failure probability. Finally we confirm our results using previously known examples.

## Keywords

Quantum state discrimination Inconclusive state discrimination Minimum error discrimination Maximum confidence Inconclusive degree## Notes

### Acknowledgements

This work is supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF2015R1D1A1A01060795) and Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government (MSIP) (No. R0190-15-2028, PSQKD).

## References

- 1.Chefles, A.: Quantum state discrimination. Contemp. Phys.
**41**, 401 (2000)ADSCrossRefzbMATHGoogle Scholar - 2.Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photon.
**1**, 238 (2009)CrossRefGoogle Scholar - 3.Bergou, J.A.: Discrimination of quantum states. J. Mod. Opt.
**57**, 160 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar - 4.Bae, J., Kwek, L.C.: Quantum state discrimination and its applications. J. Phys. A Math. Theor.
**48**, 083001 (2015)ADSCrossRefzbMATHMathSciNetGoogle Scholar - 5.Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)zbMATHGoogle Scholar
- 6.Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1979)Google Scholar
- 7.Yuen, H.P., Kennedy, R.S., Lax, M.: Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inf. Theory
**21**, 125 (1975)CrossRefzbMATHMathSciNetGoogle Scholar - 8.Ban, M., Kurokawa, K., Momose, R., Hirota, O.: Optimum measurements for discrimination among symmetric quantum states and parameter estimation. Int. J. Theor. Phys.
**36**, 1269 (1997)CrossRefzbMATHMathSciNetGoogle Scholar - 9.Chou, C.L., Hsu, L.Y.: Minimum-error discrimination between symmetric mixed quantum states. Phys. Rev. A
**68**, 042305 (2003)ADSCrossRefGoogle Scholar - 10.Herzog, U.: Minimum-error discrimination between a pure and a mixed two-qubit state. J. Opt. B Quantum Semiclass. Opt.
**6**, S24 (2004)ADSCrossRefGoogle Scholar - 11.Samsonov, B.F.: Minimum error discrimination problem for pure qubit states. Phys. Rev. A
**80**, 052305 (2009)ADSCrossRefMathSciNetGoogle Scholar - 12.Deconinck, M.E., Terhal, B.M.: Qubit state discrimination. Phys. Rev. A
**81**, 062304 (2010)ADSCrossRefGoogle Scholar - 13.Jafarizadeh, M.A., Mazhari, Y., Aali, M.: The minimum-error discrimination via Helstrom family of ensembles and convex optimization. Quantum Inf. Process.
**10**, 155 (2011)CrossRefzbMATHMathSciNetGoogle Scholar - 14.Khiavi, Y.M., Kourbolagh, Y.A.: Minimum-error discrimination among three pure linearly independent symmetric qutrit states. Quantum Inf. Process.
**12**, 1255 (2013)ADSCrossRefzbMATHMathSciNetGoogle Scholar - 15.Bae, J., Hwang, W.Y.: Minimum-error discrimination of qubit states: methods, solutions, and properties. Phys. Rev. A
**87**, 012334 (2013)ADSCrossRefGoogle Scholar - 16.Bae, J.: Structure of minimum-error quantum state discrimination. New J. Phys.
**15**, 073037 (2013)ADSCrossRefMathSciNetGoogle Scholar - 17.Ha, D., Kwon, Y.: Complete analysis for three-qubit mixed-state discrimination. Phys. Rev. A
**87**, 062302 (2013)ADSCrossRefGoogle Scholar - 18.Ha, D., Kwon, Y.: Discriminating \(N\)-qudit states using geometric structure. Phys. Rev. A
**90**, 022330 (2014)ADSCrossRefGoogle Scholar - 19.Ivanovic, I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A
**123**, 257 (1987)ADSCrossRefMathSciNetGoogle Scholar - 20.Dieks, D.: Overlap and distinguishability of quantum states. Phys. Lett. A
**126**, 303 (1988)ADSCrossRefMathSciNetGoogle Scholar - 21.Peres, A.: How to differentiate between non-orthogonal states. Phys. Lett. A
**128**, 19 (1988)ADSCrossRefMathSciNetGoogle Scholar - 22.Jaeger, G., Shimony, A.: Optimal distinction between two non-orthogonal quantum states. Phys. Lett. A
**197**, 83 (1995)ADSCrossRefzbMATHMathSciNetGoogle Scholar - 23.Rudolph, T., Spekkens, R.W., Turner, P.S.: Unambiguous discrimination of mixed states. Phys. Rev. A
**68**, 010301(R) (2003)ADSCrossRefMathSciNetGoogle Scholar - 24.Herzog, U., Bergou, J.A.: Optimum unambiguous discrimination of two mixed quantum states. Phys. Rev. A
**71**, 050301(R) (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar - 25.Pang, S., Wu, S.: Optimum unambiguous discrimination of linearly independent pure states. Phys. Rev. A
**80**, 052320 (2009)ADSCrossRefGoogle Scholar - 26.Kleinmann, M., Kampermann, H., Bruß, D.: Structural approach to unambiguous discrimination of two mixed quantum states. J. Math. Phys.
**51**, 032201 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar - 27.Sugimoto, H., Hashimoto, T., Horibe, M., Hayashi, A.: Complete solution for unambiguous discrimination of three pure states with real inner products. Phys. Rev. A
**82**, 032338 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar - 28.Bergou, J.A., Futschik, U., Feldman, E.: Optimal unambiguous discrimination of pure quantum states. Phys. Rev. Lett.
**108**, 250502 (2012)ADSCrossRefGoogle Scholar - 29.Ha, D., Kwon, Y.: Analysis of optimal unambiguous discrimination of three pure quantum states. Phys. Rev. A
**91**, 062312 (2015)ADSCrossRefGoogle Scholar - 30.Croke, S., Andersson, E., Barnett, S.M., Gilson, C.R., Jeffers, J.: Maximum confidence quantum measurements. Phys. Rev. Lett.
**96**, 070401 (2006)ADSCrossRefGoogle Scholar - 31.Chefles, A., Barnett, S.M.: Strategies for discriminating between non-orthogonal quantum states. J. Mod. Opt.
**45**, 1295 (1998)ADSCrossRefzbMATHMathSciNetGoogle Scholar - 32.Zhang, C.W., Li, C.F., Guo, G.C.: General strategies for discrimination of quantum states. Phys. Lett. A
**261**, 25 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar - 33.Fiurášek, J., Ježek, M.: Optimal discrimination of mixed quantum states involving inconclusive results. Phys. Rev. A
**67**, 012321 (2003)ADSCrossRefGoogle Scholar - 34.Eldar, Y.C.: Mixed-quantum-state detection with inconclusive results. Phys. Rev. A
**67**, 042309 (2003)ADSCrossRefMathSciNetGoogle Scholar - 35.Herzog, U.: Optimal state discrimination with a fixed rate of inconclusive results: analytical solutions and relation to state discrimination with a fixed error rate. Phys. Rev. A
**86**, 032314 (2012)ADSCrossRefGoogle Scholar - 36.Bagan, E., Muñoz-Tapia, R., Olivares-Rentería, G.A., Bergou, J.A.: Optimal discrimination of quantum states with a fixed rate of inconclusive outcomes. Phys. Rev. A
**86**, 040303(R) (2012)ADSCrossRefGoogle Scholar - 37.Nakahira, K., Usuda, T.S., Kato, K.: Finding optimal measurements with inconclusive results using the problem of minimum error discrimination. Phys. Rev. A
**91**, 022331 (2015)ADSCrossRefGoogle Scholar - 38.Herzog, U.: Optimal measurements for the discrimination of quantum states with a fixed rate of inconclusive results. Phys. Rev. A
**91**, 042338 (2015)ADSCrossRefGoogle Scholar - 39.Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
- 40.Eldar, Y.C., Megretski, A., Verghese, G.C.: Designing optimal quantum detectors via semidefinite programming. IEEE Trans. Inf. Theory
**49**, 1007 (2003)CrossRefzbMATHMathSciNetGoogle Scholar