Implementation of quantum key distribution network simulation module in the network simulator NS-3

  • Miralem MehicEmail author
  • Oliver Maurhart
  • Stefan Rass
  • Miroslav Voznak


As the research in quantum key distribution (QKD) technology grows larger and becomes more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. Due to the specificity of the QKD link which requires optical and Internet connection between the network nodes, to deploy a complete testbed containing multiple network hosts and links to validate and verify a certain network algorithm or protocol would be very costly. Network simulators in these circumstances save vast amounts of money and time in accomplishing such a task. The simulation environment offers the creation of complex network topologies, a high degree of control and repeatable experiments, which in turn allows researchers to conduct experiments and confirm their results. In this paper, we described the design of the QKD network simulation module which was developed in the network simulator of version 3 (NS-3). The module supports simulation of the QKD network in an overlay mode or in a single TCP/IP mode. Therefore, it can be used to simulate other network technologies regardless of QKD.


Quantum key distribution Network Simulation NS-3 



The authors are grateful to the anonymous reviewers for their comments and suggestions that helped improve the quality of this paper. The research received a financial support from the SGS Grant No. SP2017/174, VSB - Technical University of Ostrava, Czech Republic.


  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alleaume, R., Branciard, C., Bouda, J., Debuisschert, T., Dianati, M., Gisin, N., Godfrey, M., Grangier, P., Langer, T., Lutkenhaus, N., Monyk, C., Painchault, P., Peev, M., Poppe, A., Pornin, T., Rarity, J., Renner, R., Ribordy, G., Riguidel, M., Salvail, L., Shields, A., Weinfurter, H., Zeilinger, A.: Using quantum key distribution for cryptographic purposes: a survey. Theor. Comput. Sci. 560(P1), 62–81 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Maurer, U.: Information-theoretically secure secret-key agreement by NOT authenticated public discussion. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 1233, 209–225 (1997)Google Scholar
  4. 4.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175, p. 8. New York (1984)Google Scholar
  5. 5.
    Renner, R.: Security of quantum key distribution. Ph.D. thesis, Swiss Federal Institute of Technology Zurich (2005)Google Scholar
  6. 6.
    Alleaume, R., Bouda, J., Branciard, C., Debuisschert, T., Dianati, M., Gisin, N., Godfrey, M., Grangier, P., Langer, T., Leverrier, A., Lutkenhaus, N., Painchault, P., Peev, M., Poppe, A., Pornin, T., Rarity, J., Renner, R., Ribordy, G., Riguidel, M., Salvail, L., Shields, A., Weinfurter, H., Zeilinger, A.: SECOQC White Paper on Quantum Key Distribution and Cryptography, p. 28. arXiv preprint arXiv:quant-ph/0701168 (2007)
  7. 7.
    Elliott, C., Yeh, H.: DARPA quantum network testbed. Technical Report July, BBN Technologies Cambridge, New York, USA (2007)Google Scholar
  8. 8.
    Xu, F.X., Chen, W., Wang, S., Yin, Z.Q., Zhang, Y., Liu, Y., Zhou, Z., Zhao, Y.B., Li, H.W., Liu, D., Han, Z.F., Guo, G.C.: Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin. Sci. Bull. 54(17), 2991–2997 (2009)CrossRefGoogle Scholar
  9. 9.
    Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., Miki, S., Yamashita, T., Wang, Z., Tanaka, A., Yoshino, K.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19(11), 10387–10409 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Wang, S., Chen, W., Yin, Z.Q., Li, H.W., He, D.Y., Li, Y.H., Zhou, Z., Song, X.T., Li, F.Y., Wang, D., Chen, H., Han, Y.G., Huang, J.Z., Guo, J.F., Hao, P.L., Li, M., Zhang, C.M., Liu, D., Liang, W.Y., Miao, C.H., Wu, P., Guo, G.C., Han, Z.F.: Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express 22(18), 21739 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Yin, J., Cao, Y., Li, Y.H., Liao, S.K., Zhang, L., Ren, J.G., Al, W.Q.C., Liu, W.Y., Bo Li, H.D., Li, G.B., Lu, Q.M., Gong, Y.H., Xu, Y., Li, S.L., Li, F.Z., Yin, Y.Y., Jiang, Z.Q., Li, M., Jia, J.J., Ge Ren, D.H., Zhou, Y.L., Zhang, X.X., Wang, N., Chang, X., Zhu, Z.C., Liu, N.L., Chen, Y.A., Lu, C.Y., Shu, R., Peng, C.Z., Wang, J.Y., Pan, J.W.: Satellite-based entanglement distribution over 1200 kilometers. Science 356(6343), 1140–1144 (2017)CrossRefGoogle Scholar
  12. 12.
    Mehic, M., Fazio, P., Voznak, M., Chromy, E.: Toward designing a quantum key distrubution network. Adv. Electr Electron. Eng. 14(4), 413–420 (2016)Google Scholar
  13. 13.
    Henderson, T.R., Riley, G.F.: Network simulations with the ns-3 simulator. In: Proceedings of Sigcomm, pp. 527 (2006)Google Scholar
  14. 14.
    Kollmitzer, C., Pivk, M. (eds.): Applied Quantum Cryptography. Lecture Notes in Physics, vol. 797. Springer, Berlin Heidelberg (2010). doi: 10.1007/978-3-642-04831-9
  15. 15.
    Dianati, M., Alleaume, R.: Architecture of the Secoqc quantum key distribution network. In: 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM’07), IEEE, pp. 13–13, Jan 2007Google Scholar
  16. 16.
    Mehic, M., Maurhart, O., Rass, S., Komosny, D., Rezac, F., Voznak, M.: Analysis of the public channel of quantum key distribution link. IEEE J. Quantum Electron. (2017, in press)Google Scholar
  17. 17.
    Ciurana, A., Martinez-Mateo, J., Peev, M., Poppe, A., Walenta, N., Zbinden, H., Martin, V.: Quantum metropolitan optical network based on wavelength division multiplexing. Opt. Express 22(2), 1576–93 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Aleksic, S., Winkler, D., Franzl, G., Poppe, A., Schrenk, B., Hipp, F.: Quantum key distribution over optical access networks. In: Proceedings of the 2013 18th European Conference on Network and Optical Communications and 2013 8th Conference on Optical Cabling and Infrastructure (NOC-OC&I), pp. 11–18. (2013)Google Scholar
  19. 19.
    Alleaume, R., Roueff, F., Diamanti, E., Lutkenhaus, N.: Topological optimization of quantum key distribution networks. N. J. Phys. 11(7), 075002 (2009)CrossRefGoogle Scholar
  20. 20.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    Salvail, L., Peev, M., Diamanti, E., Alléaume, R., Lütkenhaus, N., Länger, T.: Security of trusted repeater quantum key distribution networks. J. Comput. Secur. 18(1), 61–87 (2010)CrossRefGoogle Scholar
  22. 22.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301–1350 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Dušek, M., Lütkenhaus, N., Hendrych, M.: Quantum cryptography. In: Progress in Optics, vol. 49, pp. 381–454 (2006).
  24. 24.
    Dixon, A.R., Yuan, Z.L., Dynes, J.F., Sharpe, A.W., Shields, A.J.: Continuous operation of high bit rate quantum key distribution. Appl. Phys. Lett. 96(2010), 2008–2011 (2010)Google Scholar
  25. 25.
    Korzh, B., Lim, C.C.W., Houlmann, R., Gisin, N., Li, M.J., Nolan, D., Sanguinetti, B., Thew, R., Zbinden, H.: Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat. Photon. 9(3), 163–168 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Sasaki, M.: Tokyo QKD network and the evolution to secure photonic network. In: CLEO:2011—Laser Applications to Photonic Applications, vol. 1., p. JTuC1. OSA, Washington, D.C. (2011)Google Scholar
  27. 27.
    Wang, S., Chen, W., Guo, J.F., Yin, Z.Q., Li, H.W., Zhou, Z., Guo, G.C., Han, Z.F.: 2 GHz clock quantum key distribution over 260 km of standard telecom fiber. Opt. Lett. 37(6), 1008 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Dianati, M., All, R., Alléaume, R., Gagnaire, M., Shen, X.S.: Architecture and protocols of the future European quantum key distribution network. Secur. Commun. Netw. 1(1), 57–74 (2008)CrossRefGoogle Scholar
  29. 29.
    Mehic, M., Niemiec, M., Voznak, M.: Calculation of the key length for quantum key distribution. Elektron. ir Elektrotech. 21(6), 81–85 (2015)CrossRefGoogle Scholar
  30. 30.
    Elliott, C.: Building the quantum network. N. J. Phys. 4, 346 (2002)CrossRefGoogle Scholar
  31. 31.
    Abidin, A., Larsson, J.Å.:Security of Authentication with a Fixed Key in Quantum Key Distribution, p. 14 (2011)Google Scholar
  32. 32.
    Portmann, C.: Key recycling in authentication. IEEE Trans. Inf. Theory 60(7), 4383–4396 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Hao, W., Zheng-Fu, H., Guang-Can, G., Pei-Lin, H.: The queueing model for quantum key distribution network. J. Phys. G G36(7), 25006 (2009)Google Scholar
  34. 34.
    Konig, S., Rass, S.: On the transmission capacity of quantum networks. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2(11), 9–16 (2011)Google Scholar
  35. 35.
    Rass, S., König, S.: Turning quantum cryptography against itself: how to avoid indirect eavesdropping in quantum networks by passive and active adversaries. Int. J. Adv. Syst. Meas. 5(1), 22–33 (2012)Google Scholar
  36. 36.
    Collins, D., Gisin, N., de Riedmatten, H.: Quantum relays for long-distance quantum cryptography. J. Mod. Opt. 52, 735–753 (2005)ADSCrossRefzbMATHGoogle Scholar
  37. 37.
    Dur, W., Briegel, H.J., Cirac, J.I., Zoller, P.: Quantum repeaters based on entanglement purification. Phys. Rev. A 59(1), 169–181 (1999)ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    Yuan, Z.S., Chen, Y.A., Zhao, B., Chen, S., Schmiedmayer, J., Pan, J.W.: Experimental demonstration of a BDCZ quantum repeater node. Nature 454(7208), 1098–1101 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Poppe, A., Peev, M., Maurhart, O.: Outline of the SECOQC quantum-key-distribution network in Vienna. J. Quantum Inf. 6(2), 10 (2008)CrossRefGoogle Scholar
  40. 40.
    Sergienko, A.V. (ed.): Quantum Communications and Cryptography, Optical Science and Engineering, 1st edn. CRC Press, Boca Raton (2005)Google Scholar
  41. 41.
    Marhoefer, M.,Wimberger, I., Poppe, A.: Applicability of Quantum Cryptography for Securing Mobile Communication Networks (2006).
  42. 42.
    Hayashi, M., Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: Quantum network coding. In: Thomas, W., Weil, P. (eds.) Lecture Notes in Computer Science. Volume 4393 of Lecture Notes in Computer Science, pp. 610–621. Springer, Berlin (2007)Google Scholar
  43. 43.
    Schartner, P., Rass, S., Schaffer, M.: Quantum key management. In: Applied Cryptography and Network Security. InTech (2012)Google Scholar
  44. 44.
    Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay networks. Sosp 32(1), 66 (2001)Google Scholar
  45. 45.
    Rekhter, Y., Li, T., Hares, S.: A Border Gateway Protocol 4 (BGP-4), No. RFC 4271 (2005).
  46. 46.
    Labovitz, C., Ahuja, A., Wattenhofer, R., Venkatachary, S.: The impact of internet policy and topology on delayed routing convergence. In: Proceedings IEEE INFOCOM 2001, Conference on Computer Communications, Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213), vol. 1, pp. 537–546. (2001)Google Scholar
  47. 47.
    Chun, B.G., Fonseca, R., Stoica, I., Kubiatowicz, J.: Characterizing selfishly constructed overlay routing networks. In: IEEE INFOCOM 2004, IEEE, vol. 2., pp. 1329–1339. (2004)Google Scholar
  48. 48.
    Lee, G.M., Choi, T.: Improving the interaction between overlay routing and traffic engineering. In: NETWORKING 2008 Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet, vol. 4982, pp. 530–541. LNCS, Springer, Berlin (2008)Google Scholar
  49. 49.
    Liu, Y., Zhang, H., Gong, W., Towsley, D.: On the interaction between overlay routing and underlay routing. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, IEEE, vol. 4, pp. 2543–2553. (2005)Google Scholar
  50. 50.
    Niemiec, M., Romanski, L., Swiety, M.: Quantum cryptography protocol simulator. In: Communications in Computer and Information Science, CCIS, vol. 149, pp. 286–292. (2011)Google Scholar
  51. 51.
    Pereszlenyi, A.: Simulation of quantum key distribution with noisy channels. In: Proceedings of the 8th International Conference on Telecommunications, ConTEL, IEEE , vol. 1, pp. 203–210. (2005)Google Scholar
  52. 52.
    Zhang, X., Wen, Q.: Object-oriented quantum cryptography simulation model. In: Third International Conference on Natural Computation, Number ICNC, IEEE, pp. 7–10. (2007)Google Scholar
  53. 53.
    Zhao, S., De Raedt, H., Liu, B., Huang, Y.: Event-by-event simulation of quantum cryptography protocols. J. Comput. Theor. Nanosci. 5(7), 1251–1254 (2008)CrossRefGoogle Scholar
  54. 54.
    Buhari, A.: An efficient modeling and simulation of quantum key distribution protocols using OptiSystem. In: IEEE Symposium on Industrial Electronics and Applications (ISIEA), pp. 84–89. Bandung (2012)Google Scholar
  55. 55.
    Mailloux, L.O., Morris, J.D., Grimaila, M.R., Hodson, D.D., Jacques, D.R., Colombi, J.M., Mclaughlin, C.V., Holes, J.A.: A modeling framework for studying quantum key distribution system implementation nonidealities. IEEE Access 3, 110–130 (2015)CrossRefGoogle Scholar
  56. 56.
    Breslau, L., Estrin, D., Fall, K., Floyd, S., Heidemann, J., Helmy, A., Huang, P., McCanne, S., Varadhan, K., Xu, Y., Yu, H.: Advances in network simulation. Computer 33(5), 59–67 (2000)CrossRefGoogle Scholar
  57. 57.
    Cavin, D., Sasson, Y., Schiper, A.: On the accuracy of MANET simulators. In: Proceedings of the second ACM International Workshop on Principles of Mobile Computing—POMC ’02, vol. 1, p. 38. ACM Press, New York (2002)Google Scholar
  58. 58.
    Andel, T., Yasinac, A.: On the credibility of manet simulations. Computer 39(7), 48–54 (2006)CrossRefGoogle Scholar
  59. 59.
    Altman, E., Jimenez, T.: NS Simulator for Beginners. In: Walrand, J. (ed.) Synthesis Lectures on Communication Networks, vol. 5. Morgan and Claypool Publishers (2012). doi: 10.2200/S00397ED1V01Y201112CNT010
  60. 60.
    Aguado, A., Martin, V., Lopez, D., Peev, M., Martinez-Mateo, J., Rosales, J., de la Iglesia, F., Gomez, M., Hugues-Salas, E., Lord, A., Nejabati, R.: Quantum-aware software defined networks. In: 6th International Conference on Quantum Cryptography (QCRYPT 2016), p. 3. QCrypt, Washington, DC (2016)Google Scholar
  61. 61.
    Rass, S., Sandra, K.: Indirect Eavesdropping in Quantum Networks. In: The Fifth International Conference on Quantum, Nano and Micro Technologies, ICQNM, pp. 83–88. (2011)Google Scholar
  62. 62.
    Mehic, M., Komosny, D., Mauhart, O., Voznak, M., Rozhon, J.: Impact of packet size variation in overlay quantum key distribution network. In: 2016 XI International Symposium on Telecommunications (BIHTEL), Sarajevo, Bosnia and Herzegovina, IEEE, pp. 1–6. (2016)Google Scholar
  63. 63.
    Cederlöf, J.: Authentication in quantum key growing. Ph.D. thesis, Master Thesis, Linköping University (2005)Google Scholar
  64. 64.
    Wehrle, K., Günes, M., Gross, J. (eds.): Modeling and Tools for Network Simulation, 1st edn. Springer-Verlag Berlin Heidelberg (2010). doi: 10.1007/978-3-642-12331-3
  65. 65.
    Riley, G.F., Henderson, T.R.: The ns-3 network simulator. In: Modeling and Tools for Network Simulation, pp. 15–34. Springer, Berlin (2010)Google Scholar
  66. 66.
    Fall, K., Varadhan, K.: The Network Simulator (ns-2). (2007)
  67. 67.
    Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., Debuisschert, T., Diamanti, E., Dianati, M., Dynes, J.F., Fasel, S., Fossier, S., Fürst, M., Gautier, J.D., Gay, O., Gisin, N., Grangier, P., Happe, A., Hasani, Y., Hentschel, M., Hübel, H., Humer, G., Länger, T., Legré, M., Lieger, R., Lodewyck, J., Lorünser, T., Lütkenhaus, N., Marhold, A., Matyus, T., Maurhart, O., Monat, L., Nauerth, S., Page, J.B., Poppe, A., Querasser, E., Ribordy, G., Robyr, S., Salvail, L., Sharpe, A.W., Shields, A.J., Stucki, D., Suda, M., Tamas, C., Themel, T., Thew, R.T., Thoma, Y., Treiber, A., Trinkler, P., Tualle-Brouri, R., Vannel, F., Walenta, N., Weier, H., Weinfurter, H., Wimberger, I., Yuan, Z.L., Zbinden, H., Zeilinger, A.: The SECOQC quantum key distribution network in Vienna. N. J. Phys. 11(7), 075001 (2009)CrossRefGoogle Scholar
  68. 68.
    Dodson, D., Fujiwara, M., Grangier, P., Hayashi, M., Imafuku, K., Kitayama, K.I., Kumar, P., Kurtsiefer, C., Lenhart, G., Luetkenhaus, N., et al.: Updating quantum cryptography report ver. 1. arXiv preprint arXiv:0905.4325 (2009)
  69. 69.
    Cederlöf, J.: Larsson, Ja: Security aspects of the authentication used in quantum cryptography. IEEE Trans. Inf. Theory 54(4), 1735–1741 (2008). doi: 10.1109/TIT.2008.917697 MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Dai, W.: Crypto++ library. Retrieved from (2017)
  71. 71.
    Maurhart, O., Pacher, C., Happe, A., Lor, T., Tamas, C., Poppe, A., Peev, M.: New release of an open source QKD software: design and implementation of new algorithms, modularization and integration with IPSec. In: Qcrypt 2013. (2013)Google Scholar
  72. 72.
    Mehic, M., Partila, P., Tovarek, J., Voznak, M.: Calculation of key reduction for B92 QKD protocol. In Donkor, E., Pirich, A.R., Hayduk, M., (eds.) SPIE Sensing Technology + Applications, International Society for Optics and Photonics, p. 95001J. (2015)Google Scholar
  73. 73.
    Fedrizzi, A., Poppe, A., Ursin, R., Lorünser, T., Peev, M., Länger, T., Zeilinger, A.: Practical quantum key distribution with polarization entangled photons. In: 2005 European Quantum Electronics Conference, EQEC ’05, vol. 16, p. 303. (2005)Google Scholar
  74. 74.
    Stavroulakis, P., Stamp, M.: Handbook of Information and Communication Security. Springer, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  75. 75.
    Mink, A., Tang, X., Ma, L., Nakassis, T., Hershman, B., Bienfang, J.C., Su, D., Boisvert, R., Clark, C.W., Williams, C.J.: High speed quantum key distribution system supports one-time pad encryption of real-time video. Proc. SPIE 6244, 62440M-1–7 (2006)Google Scholar
  76. 76.
    Tajima, A., Tanaka, A., Maeda, W., Takahashi, S., Tomita, A.: Practical quantum cryptosystem for metro area applications. IEEE J. Sel. Top. Quantum Electron. 13(4), 1031–1037 (2007)CrossRefGoogle Scholar
  77. 77.
    Mirza, A., Petruccione, F.: Realizing long-term quantum cryptography. J. Opt. Soc. Am. B 27(6), A185 (2010)ADSCrossRefGoogle Scholar
  78. 78.
    Langer, T.: The practical application of quantum key distribution. Ph.D. thesis, University of Lausanne (2013)Google Scholar
  79. 79.
    Chakeres, I.D., Belding-Royer, E.M.: AODV Routing Protocol Implementation Design. In: Proceedings of 24th International Conference on Distributed Computing Systems Workshops, Hachioji, Tokyo, Japan, 23–24 March 2004, pp. 698–703. IEEE (2004)Google Scholar
  80. 80.
    Fazio, P., De Rango, F., Sottile, C.: An on demand interference aware routing protocol for VANETS. J. Netw. 7(11), 1728–1738 (2012)Google Scholar
  81. 81.
    He, G.: Destination-Sequenced Distance Vector (DSDV) Protocol, pp. 1–9. Networking Laboratory, Helsinki University of Technology (2002).
  82. 82.
    Mehic, M., Fazio, P., Voznak, M., Partila, P., Komosny, D., Tovarek, J., Chmelikova, Z.: On using multiple routing metrics with destination sequenced distance vector protocol for MultiHop wireless ad hoc networks. Int. Soc. Opt. Photon. 98480F (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of TelecommunicationsVSB-Technical University of OstravaOstrava-PorubaCzech Republic
  2. 2.Digital Safety and Security DepartmentAIT Austrian Institute of Technology GmbHViennaAustria
  3. 3.Universitaet Klagenfurt, Institute of Applied Informatics, System Security GroupKlagenfurtAustria

Personalised recommendations