Quantum discord protection of a two-qutrit V-type atomic system from decoherence by partially collapsing measurements

  • N. Behzadi
  • E. FaiziEmail author
  • O. Heibati


In this paper, by exploiting the weak measurement and quantum measurement reversal procedure, we propose a scheme to show how one can protect the geometric quantum discord (GQD) of a two-qutrit V-type atomic system each of which interacts with a dissipative reservoir independently. We examine the scheme for the GQD of the initial two-qutrit Werner and Horodecki states for different classes of weak measurement strengths. It is found out that the presented protocol enables us to suppress decoherence due to the amplitude damping channel and preserve the quantum discord of the two-qutrit system successfully.


Geometric quantum discord Decoherence Weak measurement Quantum measurement reversal 


  1. 1.
    Niset, J., Cerf, N.J.: Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A 74, 052103 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Cavalcanti, D., Aolita, L., Boixo, S., Modi, K., Piani, M., Winter, A.: Operational interpretations of quantum discord. Phys. Rev. A 83, 032324 (2011)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Dakic, B., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)CrossRefGoogle Scholar
  9. 9.
    Streltsov, A., Kampermann, H., Bru, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Chuan, T.K., et al.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Streltsov, A., Zurek, W.H.: Quantum discord cannot be shared. Phys. Rev. Lett. 111, 040401 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Gu, M., et al.: Observing the operational significance of discord consumption. Nat. Phys. 8, 671 (2012)CrossRefGoogle Scholar
  13. 13.
    Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    Kwiat, P.G., Berglund, A.J., Alterpeter, J.B., White, A.G.: Experimental verification of decoherencefree subspaces. Science 290, 498 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Kwiat, P.G., Lopez, S.B., Stefanov, A., Gisin, N.: Experimental entanglement distillation and hidden non-locality. Nature 409, 1014 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    Dong, R., Lassen, M., Heersink, J., Marquardt, C., Filip, R., Leuchs, G., Andersen, U.L.: Experimental entanglement distillation of mesoscopic quantum states. Nat. Phys. 4, 919 (2008)CrossRefzbMATHGoogle Scholar
  19. 19.
    Maniscalco, S., Francica, F., Zaffino, R.L., Lo Gullo, N., Plastina, F.: Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R 2493 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    Katz, N., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Sun, Q.Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Xiao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83, 054301 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Sun, Q.Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)CrossRefGoogle Scholar
  29. 29.
    Man, Z.X., Xia, Y.J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Xiao, X., Li, Yan-Ling: Protecting qutrit–qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D. 67, 204 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Yune, J., Hong, K.H., Lim, H.T., Lee, JCh., Kwon, O., Han, S.W., Kim, Y.S., Moon, S., Kim, Y.H.: Quantum discord protection from amplitude damping decoherence. Optics Express 23, 26012 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Jakobczyk, L., Frydryszak, A.: Qutrit geometric discord. Phys. Lett. A. 380, 1535 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Streltsov, A.: Quantum Correlations Beyond Entanglement and Their Role in Quantum Information Theory. Springer, Berlin (2015)zbMATHGoogle Scholar
  34. 34.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    Luo, Sh, Fu, Sh: Geometric measure of quantum discord. Phys. Rev. A. 82, 034302 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Behzadi, N., Ahansaz, B., Ektesabi, A., Faizi, E.: Effect of two-qutrit entanglement on quantum speed limit time of a bipartite V-type open system, arXiv:1608.07821v1 (2016)
  38. 38.
    Gu, Wen-ju, Li, Gao-xiang: Non-Markovian behavior for spontaneous decay of a V-type three-level atom with quantum interference. Phys. Rev. A 85, 014101 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Korotkov, A.N.: Continuous quantum measurement of a double dot. Phys. Rev. B 60, 5737 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  41. 41.
    Wang, Q., He, Z.: Decoherence suppression of a qutrit system with both spontaneous emission and dephasing by weak measurement and reversal. Phys. Scr. 90, 055102 (2015)CrossRefGoogle Scholar
  42. 42.
    Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Horodecki, P., Horodecki, M., Horodecki, R.: Bound entanglement can be activated. Phys. Rev. Lett. 82, 1056 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Research Institute for Fundamental SciencesUniversity of TabrizTabrizIran
  2. 2.Department of Fundamental SciencesAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations