Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Transmission losses in optical qubits for controlled teleportation


In this work, we investigate the controlled teleportation protocol using optical qubits within the single-rail logic. The protocol makes use of an entangled tripartite state shared by the controller and two further parties (users) who will perform standard teleportation. The goal of the protocol is to guarantee that the teleportation is successful only with the permission of the controller. Optical qubits based on either superpositions of vacuum and single-photon states or superposition of coherent states are employed here to encode a tripartite maximal slice state upon which the protocol is based. We compare the performances of these two encodings under losses which are present when the qubits are guided through an optical fiber to the users. Finally, we investigate the non-locality of the shared tripartite state to see whether or not it impacts the efficiency of the protocol.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

  2. 2.

    Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)

  3. 3.

    Bell, J.S.: On the Einstein Podolsky Rosen paradox, Physics 1 (Long island City, N. Y.), 195 (1964)

  4. 4.

    Jones, S.J., Wiseman, H.M., Doherty, A.C.: Entanglement, Einstein-Podolsky-Rosen correlations, bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007)

  5. 5.

    Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

  6. 6.

    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

  7. 7.

    Bennett, Charles H., Wiesner, Stephen J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

  8. 8.

    Horodecki, R., Horodecki, M., Horodecki, P.: Teleportation, Bell’s inequalities and inseparability. Phys. Lett. A 21, 222 (1996)

  9. 9.

    Munhoz, P.P., Roversi, J.A., Vidiella-Barranco, A., Semião, F.L.: Spontaneous emission and teleportation in cavity QED. J. Phys. B At. Mol. Opt. Phys. 38, 3875 (2005)

  10. 10.

    Semião, F.L., Missori, R.J., Furuya, K.: Unconditional Bell-type state generation for spatially separate trapped ions. J. Phys. B At. Mol. Opt. Phys. 40, S221 (2007)

  11. 11.

    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

  12. 12.

    Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

  13. 13.

    Popescu, S.: Bell’s inequalities versus teleportation: what is nonlocality? Phys. Rev. Lett. 72, 797 (1994)

  14. 14.

    Gao, T., Yan, F.L., Li, Y.C.: Optimal controlled teleportation. Europhys. Lett. 84, 50001 (2008)

  15. 15.

    Li, X.-H., Ghose, S.: Control power in perfect controlled teleportation via partially entangled channels. Phys. Rev. A 90, 052305 (2014)

  16. 16.

    Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822 (1998)

  17. 17.

    Lund, A.P., Ralph, T.C.: Nondeterministic gates for photonic single-rail quantum logic. Phys. Rev. A 66, 032307 (2002)

  18. 18.

    Hayes, A.J.F., Gilchrist, A., Myers, C.R., Ralph, T.C.: Utilizing encoding in scalable linear optics quantum. J. Opt. B Quantum Semiclass. Opt. 6, 533 (2004)

  19. 19.

    Ralph, T.C., Lund, A.P., Wiseman, H.M.: Adaptive phase measurements in linear optical quantum computation. J. Opt. B Quantum Semiclass. Opt. 7, S245 (2005)

  20. 20.

    Wu, L.-A., Walther, P., Lidar, D.A.: No-go theorem for passive single-rail linear optical quantum computing. Sci. Rep. 3, 1394 (2013)

  21. 21.

    Lee, H.-W., Kim, J.: Quantum teleportation and Bell’s inequality using single-particle entanglement. Phys. Rev. A 63, 012305 (2000)

  22. 22.

    Resch, K.J., Lundeen, J.S., Steinberg, A.M.: Quantum state preparation and conditional coherence. Phys. Rev. Lett. 88, 113601 (2002)

  23. 23.

    Lvovsky, A.I., Mlynek, J.: Quantum-optical catalysis: generating nonclassical states of light by means of linear optics. Phys. Rev. Lett. 88, 250401 (2002)

  24. 24.

    Lombardi, E., Sciarrino, F., Popescu, S., De Martini, F.: Teleportation of a vacuum–one-photon qubit. Phys. Rev. Lett. 88, 070402 (2002)

  25. 25.

    Munhoz, P.P., Roversi, J.A., Vidiella-Barranco, A., Semião, F.L.: Bipartite quantum channels using multipartite cluster-type entangled coherent states. Phys. Rev. A 81, 042305 (2010)

  26. 26.

    Haroche, S., Raimond, J.-M.: Exploring the Quantum—Atoms, Cavities and Photons. Oxford University Press, Oxford (2006)

  27. 27.

    Jeong, H., Kim, M.S., Lee, J.: Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel. Phys. Rev. A 64, 052308 (2001)

  28. 28.

    Jeong, H., Kim, M.S.: Efficient quantum computation using coherent states. Phys. Rev. A 65, 042305 (2002)

  29. 29.

    Gilchrist, A., Nemoto, K., Munro, W.J., Ralph, T.C., Glancy, S., Braunstein, S.L., Milburn, G.J.: Schrodinger cats and their power for quantum information processing. J. Opt. B Quantum Semiclass. Opt. 6, S828 (2004)

  30. 30.

    Munhoz, P.P., Semião, F.L., Vidiella-Barranco, A., Roversi, J.A.: Cluster-type entangled coherent states. Phys. Lett. A 372, 3580 (2008)

  31. 31.

    Wang, Chen, et al.: A Schrödinger cat living in two boxes. Science 352, 1087 (2016)

  32. 32.

    Semião, F.L., Vidiella-Barranco, A.: Coherent-state superpositions in cavity quantum electrodynamics with trapped ions. Phys. Rev. A 71, 065802 (2005)

  33. 33.

    Semião, F.L., Vidiella-Barranco, A.: Effective cross-Kerr nonlinearity and robust phase gates with trapped ions. Phys. Rev. A 72, 064305 (2005)

  34. 34.

    Semião, F.L., Furuya, K., Milburn, G.J.: Kerr nonlinearities and nonclassical states with superconducting qubits and nanomechanical resonators. Phys. Rev. A 79, 063811 (2009)

  35. 35.

    Sanders, B.C.: Review of entangled coherent states. J. Phys. A Math. Theor. 45, 244002 (2012)

  36. 36.

    Carteret, H.A., Sudbery, A.: Local symmetry properties of pure three-qubit states. J. Phys. A 33, 4981 (2000)

  37. 37.

    Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599 (2015)

  38. 38.

    Chen, X.-B., Xu, G., Niu, X.-X., Wen, Q.-Y., Yang, Y.-X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561 (2010)

  39. 39.

    Liu, W., Wang, Y.-B., Jiang, Z.-T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160 (2011)

  40. 40.

    Wen, L., Young-Bin, W., Wei, C.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57, 583 (2012)

  41. 41.

    Liu, W., Wang, Y.-B., Jiang, Z.-T., Cao, Y.-Z.: A protocol for the quantum private comparison of equality with \(\chi \)-type state. Int. J. Theor. Phys. 51, 69 (2012)

  42. 42.

    Jia, H.-Y., Wen, Q.-Y., Li, Y.-B., Gao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51, 1187 (2012)

  43. 43.

    Zhang, W.-W., Zhang, K.-J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12, 1981 (2013)

  44. 44.

    Tseng, H.-Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373 (2012)

  45. 45.

    Li, Y.-B., Wang, T.-Y., Chen, H.-Y., Li, M.-D., Yang, Y.-T.: Fault-tolerate quantum private comparison based on GHZ states and ECC. Int. J. Theor. Phys. 52, 2818 (2013)

  46. 46.

    Chang, Y.-J., Tsai, C.-W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12, 1077 (2013)

  47. 47.

    Li, Y.-B., Qin, S.-J., Yuan, Z., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise. Quantum Inf. Process. 12, 2191 (2013)

  48. 48.

    Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973)

  49. 49.

    Han, X.-P., Liu, J.-M.: Amplitude damping effects on controlled teleportation of a qubit by a tripartite W state. Phys. Scr. 78, 015001 (2008)

  50. 50.

    Kim, H., Park, J., Jeong, H.: Transfer of different types of optical qubits over a lossy environment. Phys. Rev. A 89, 042303 (2014)

  51. 51.

    Kim, M.S., Buzek, V.: Schrödinger-cat states at finite temperature: influence of a finite-temperature heat bath on quantum interferences. Phys. Rev. A 46, 4239 (1992)

  52. 52.

    Cavalcanti, D., Acn, A., Brunner, N., Vrtesi, T.: All quantum states useful for teleportation are nonlocal resources. Phys. Rev. A 87, 042104 (2013)

  53. 53.

    Cereceda, J.L.: Three-particle entanglement versus three-particle nonlocality. Phys. Rev. A 66, 024102 (2002)

  54. 54.

    Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066 (1987)

  55. 55.

    Ghose, S., Sinclair, N., Debnath, S., Rugnata, P., Stock, R.: Tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger–Horne–Zeilinger-class states. Phys. Rev. Lett. 102, 250404 (2009)

  56. 56.

    Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

  57. 57.

    Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

  58. 58.

    Park, J., Saunders, M., Shin, Y.-I., An, K., Jeong, H.: Bell-inequality tests with entanglement between an atom and a coherent state in a cavity. Phys. Rev. A 85, 022120 (2012)

  59. 59.

    Banaszek, K., Wdkiewicz, K.: Testing quantum nonlocality in phase space. Phys. Rev. Lett. 82, 2009 (1999)

  60. 60.

    Gerry, C.C., Knight, P.L.: Introductory Quantum Optics. Cambrige University Press, Cambrige (2005)

  61. 61.

    van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. 64, 022313 (2001)

  62. 62.

    Jeong, H., Bae, S., Choi, S.: Quantum teleportation between a single-rail single-photon qubit and a coherent-state qubit using hybrid entanglement under decoherence effects. Quantum Inf. Process. 15, 913 (2016)

  63. 63.

    Badziag, P., Horodecki, M., Horodecki, P., Horodecki, R.: Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A 62, 012311 (2000)

  64. 64.

    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

  65. 65.

    Grondalski, J., Etlinger, D.M., James, D.F.V.: The fully entangled fraction as an inclusive measure of entanglement applications. Phys. Lett. A 300, 573 (2002)

  66. 66.

    Li, X.-H., Ghose, S.: Analysis of N-qubit perfect controlled teleportation schemes from the controller’s point of view. Phys. Rev. A 91, 012320 (2015)

  67. 67.

    Jeong, K., Kim, J., Lee, S.: Minimal control power of the controlled teleportation. Phys. Rev. A 93, 032328 (2016)

  68. 68.

    van Hop, N., Bich, C.T., An, N.B.: On the role of the controller in controlled quantum teleportation. Int. J. Theor. Phys. 56, 810 (2017)

Download references


IM acknowledges support by the Coordenao de Aperfeioamento de Pessoal de Nvel Superior (CAPES). FLS acknowledges partial support from CNPq (Grant No. 307774/2014-7).

Author information

Correspondence to I. Medina.

Appendix: Teleportation fidelity

Appendix: Teleportation fidelity

Let us suppose that Alice and Bob share a general bipartite state described by the density operator \(\rho \), and they want to use this state as a channel for teleportation [6]. Assuming that Alice succeeds in projecting the local state of her two qubits in a Bell state, and that Bob can perform arbitrary rotations on his own qubit, it can be shown that the maximal fidelity for the standard teleportation protocol can be written as [63]

$$\begin{aligned} F(\rho )=\frac{2 f + 1}{3}, \end{aligned}$$

with f being the so-called fully entangled fraction defined as [64]

$$\begin{aligned} f=\underset{|{\phi }\rangle }{\mathrm{{max}}}\langle {\phi }|\rho |{\phi }\rangle , \end{aligned}$$

where the maximization is over all maximally entangled states \(|\phi \rangle \), i.e., all states that can be obtained from a singlet using local unitary transformations.

The fully entangled fraction can be found using a simple method whose steps we now briefly describe [65]. First , the density operator \(\rho \) must be written in a special basis usually referred to as the magic basis

$$\begin{aligned}&|{m_1}\rangle =|{\Phi ^+}\rangle =\frac{1}{\sqrt{2}}(|{00}\rangle +|{11}\rangle ),\nonumber \\&|{m_2}\rangle =i|{\Phi ^-}\rangle =\frac{i}{\sqrt{2}}(|{00}\rangle -|{11}\rangle ),\nonumber \\&|{m_3}\rangle =i|{\Psi ^+}\rangle =\frac{i}{\sqrt{2}}(|{01}\rangle +|{10}\rangle ),\nonumber \\&|{m_4}\rangle =|{\Psi ^-}\rangle =\frac{1}{\sqrt{2}}(|{01}\rangle -|{10}\rangle ). \nonumber \end{aligned}$$

The fully entangled fraction f is then evaluated simply as the biggest eigenvalue of the real part of \(\rho \) when written in the magic basis [65].

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Medina, I., Semião, F.L. Transmission losses in optical qubits for controlled teleportation. Quantum Inf Process 16, 235 (2017). https://doi.org/10.1007/s11128-017-1684-x

Download citation


  • Teleportation
  • Coherent states
  • Photonic qubits