On the effect of quantum noise in a quantum prisoner’s dilemma cellular automaton



The disrupting effect of quantum noise on the dynamics of a spatial quantum formulation of the iterated prisoner’s dilemma game with variable entangling is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. It is concluded in this article that quantum noise induces in fair games the need for higher entanglement in order to make possible the emergence of the strategy pair (QQ), which produces the same payoff of mutual cooperation. In unfair quantum versus classic player games, quantum noise delays the prevalence of the quantum player.


Quantum games Quantum noise Cellular automata 



This work has been funded by the Spanish Grant MTM2015-63914-P. Part of the computations of this work was performed in EOLO, an HPC machine of the International Campus of Excellence of Moncloa, funded by the UCM and Feder Funds.


  1. 1.
    Alonso-Sanz, R., Situ, H.: On the effect of quantum noise in a quantum relativistic prisoner’s dilemma cellular automaton. Int. J. Theor. Phys. 55(12), 5265–5279 (2016)CrossRefMATHGoogle Scholar
  2. 2.
    Alonso-Sanz, R.: A cellular automaton implementation of a quantum battle of the sexes game with imperfect information. Quantum Inf. Process. 14(10), 3639–3659 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alonso-Sanz, R.: Variable entangling in a quantum prisoner’s dilemma cellular automaton. Quantum Inf. Process. 14(1), 147–164 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Alonso-Sanz, R.: A quantum prisoner’s dilemma cellular automaton. Proc. R. Soc. A 470, 20130793 (2014)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Alonso-Sanz, R.: On a three-parameter quantum battle of the sexes cellular automaton. Quantum Inf. Process. 12(5), 1835–1850 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Alonso-Sanz, R.: A quantum battle of the sexes cellular automaton. Proc. R. Soc. A 468, 3370–3383 (2012)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Alonso-Sanz, R.: Dynamical Systems with Memory. World Scientific Publishing, Singapore (2011)CrossRefMATHGoogle Scholar
  8. 8.
    Du, J.F., Xu, X.D., Li, H., Zhou, X., Han, R.: Entanglement playing a dominating role in quantum games. Phys. Lett. A 89(1–2), 9–15 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Du, J.F., Li, H., Xu, X.D., Zhou, X., Han, R.: Phase-transition-like behaviour of quantum games. J. Phys. A Math. Gen. 36(23), 6551–6562 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077–3080 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Flitney, A.P., Abbott, D.: Advantage of a quantum player over a classical one in 2x2 quantum games. Proc. R. Soc. Lond. A 459(2038), 2463–2474 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Flitney, A.P., Abbott, D.: Quantum games with decoherence. J. Phys. A Math. Gen. 38(2), 449 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gawron, P., Kurzyk, D., Pawela, L.: Decoherence effects in the quantum qubit flip game using Markovian approximation. Quantum Inf. Process. 13(3), 665–682 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Huang, Z.M., Qiu, D.: Quantum games under decoherence. Int. J. Theor. Phys. 55(2), 965–992 (2016)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Iqbal, A., Chappell, J.M., Abbott, D.: On the equivalence between non-factorizable mixed-strategy classical games and quantum games. R. Soc. Open Sci. 3, 150477 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Nawaz, A., Toor, A.H.: Dilemma and quantum battle of sexes. J. Phys. A Math. Gen. 37(15), 4437–4443 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Nawaz, A., Toor, A.H.: Generalized quantization scheme for two-person non-zero sum games. J. Phys. A Math. Gen. 37(42), 365305 (2004)MathSciNetMATHGoogle Scholar
  18. 18.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  19. 19.
    Ozdemir, S.K., Shimamura, J., Morikoshi, F., Imoto, N.: Dynamics of a discoordination game with classical and quantum correlations. Phys. Lett. A 333, 218–231 (2004)ADSCrossRefMATHGoogle Scholar
  20. 20.
    Owen, G.: Game Theory. Academic Press, San Diego (1995)MATHGoogle Scholar
  21. 21.
    Schiff, J.L.: Cellular Automata: A Discrete View of the World. Wiley, Hoboken (2008)MATHGoogle Scholar
  22. 22.
    Situ, H.Z.: A quantum approach to play asymmetric coordination games. Quantum Inf. Process. 13, 591–599 (2014)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Situ, H.Z.: Quantum Bayesian game with symmetric and asymmetric information. Quantum Inf. Process. 14, 1827–1840 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Situ, H.Z.: Two-player conflicting interest Bayesian games and Bell nonlocality. Quantum Inf. Process. 15, 137–145 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.ETSIAAB (Estadistica, GSC)Technical University of MadridMadridSpain

Personalised recommendations