Exceptional quantum walk search on the cycle

Article

Abstract

Quantum walks are standard tools for searching graphs for marked vertices, and they often yield quadratic speedups over a classical random walk’s hitting time. In some exceptional cases, however, the system only evolves by sign flips, staying in a uniform probability distribution for all time. We prove that the one-dimensional periodic lattice or cycle with any arrangement of marked vertices is such an exceptional configuration. Using this discovery, we construct a search problem where the quantum walk’s random sampling yields an arbitrary speedup in query complexity over the classical random walk’s hitting time. In this context, however, the mixing time to prepare the initial uniform state is a more suitable comparison than the hitting time, and then, the speedup is roughly quadratic.

Keywords

Quantum walk Quantum search Spatial search Exceptional configuration Random walk Markov chain Hitting time Mixing time 

References

  1. 1.
    Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1), 142–164 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Tulsi, A.: Faster quantum-walk algorithm for the two-dimensional spatial search. Phys. Rev. A 78, 012310 (2008)ADSCrossRefMATHGoogle Scholar
  4. 4.
    Magniez, F., Nayak, A., Richter, P.C., Santha, M.: On the hitting times of quantum versus random walks. Algorithmica 63(1), 91–116 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ambainis, A., Bačkurs, A., Nahimovs, N., Ozols, R., Rivosh, A.: Search by quantum walks on two-dimensional grid without amplitude amplification. In: Proceedings of the 7th Conference on Theory of Quantum Computation. Communication, and Cryptography, TQC 2012, pp. 87–97. Springer, Berlin (2013)Google Scholar
  6. 6.
    Krovi, H., Magniez, F., Ozols, M., Roland, J.: Quantum walks can find a marked element on any graph. Algorithmica 74(2), 851–907 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ambainis, A., Kokainis, M.: Analysis of the extended hitting time and its properties. Poster given at the 18th Annual Conference on Quantum Information Processing (QIP 2015) in Sydney, Australia (2015)Google Scholar
  8. 8.
    Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5–6), 551–574 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Meyer, D.A.: On the absence of homogeneous scalar unitary cellular automata. Phys. Lett. A 223(5), 337–340 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing. STOC ’01, pp. 50–59. ACM, New York, NY, USA (2001)Google Scholar
  11. 11.
    Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’05, pp. 1099–1108. SIAM, Philadelphia, PA, USA (2005)Google Scholar
  12. 12.
    Ambainis, A., Rivosh, A.: Quantum walks with multiple or moving marked locations. In: Proceedings of the 34th Conference on Current Trends in Theory and Practice of Computer Science. SOFSEM 2008, pp. 485–496. Springer, Nový Smokovec, Slovakia (2008)Google Scholar
  13. 13.
    Nahimovs, N., Rivosh, A.: Quantum walks on two-dimensional grids with multiple marked locations. In: Proceedings of the 42nd International Conference on Current Trends in Theory and Practice of Computer Science. SOFSEM 2016, pp. 381–391. Springer, Harrachov, Czech Republic (2016)Google Scholar
  14. 14.
    Nahimovs, N., Rivosh, A.: Exceptional configurations of quantum walks with Grover’s coin. In: Proceedings of the 10th International Doctoral Workshop on Mathematical and Engineering Methods in Computer Science. MEMICS 2015, pp. 79–92. Springer, Telč, Czech Republic (2016)Google Scholar
  15. 15.
    Nahimovs, N., Santos, R.A.M.: Adjacent vertices can be hard to find by quantum walks. In: Proceedings of the 43rd International Conference on Current Trends in Theory and Practice of Computer Science. SOFSEM 2017, pp. 256–267. Springer, Limerick, Ireland (2017)Google Scholar
  16. 16.
    Prūsis, K., Vihrovs, J., Wong, T.G.: Stationary states in quantum walk search. Phys. Rev. A 94, 032334 (2016)ADSCrossRefMATHGoogle Scholar
  17. 17.
    Szegedy, M.: Quantum speed-up of markov chain based algorithms. Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science. FOCS ’04, pp. 32–41. IEEE Computer Society, Washington, DC, USA (2004)Google Scholar
  18. 18.
    Wong, T.G.: Equivalence of Szegedy’s and coined quantum walks. arXiv:1611.02238 [quant-ph] (2016)
  19. 19.
    Portugal, R.: Hitting time. In: Quantum Walks and Search Algorithms, pp. 165–193. Springer, New York, New York, NY, USA (2013)Google Scholar
  20. 20.
    Portugal, R., Santos, R.A.M., Fernandes, T.D., Gonçalves, D.N.: The staggered quantum walk model. Quantum Inf. Process. 15(1), 85–101 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Santos, R.A.M., Portugal, R.: Quantum hitting time on the cycle. In: Proceedings of the 3rd WECIQ Workshop/School of Computation and Quantum Information (2010)Google Scholar
  22. 22.
    Wong, T.G., Ambainis, A.: Quantum search with multiple walk steps per oracle query. Phys. Rev. A 92, 022338 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Wong, T.G., Tarrataca, L., Nahimov, N.: Laplacian versus adjacency matrix in quantum walk search. Quantum Inf. Process. 15(10), 4029–4048 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  25. 25.
    Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Marquezino, F.L., Portugal, R., Abal, G.: Mixing times in quantum walks on two-dimensional grids. Phys. Rev. A 82, 042341 (2010)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Horadam, A.F.: Oresme numbers. Fibonacci Q. 12(3), 267–271 (1974)MathSciNetMATHGoogle Scholar
  28. 28.
    Santos, R.A.M.: Quantum Markov chains. Master’s thesis, National Laboratory for Scientific Computing (LNCC) (2010) (in Portuguese) Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Texas at AustinAustinUSA
  2. 2.Center for Quantum Computer ScienceUniversity of LatviaRigaLatvia

Personalised recommendations