Perfect state transfer by means of discrete-time quantum walk on complete bipartite graphs

  • M. Štefaňák
  • S. Skoupý


We consider a quantum walk with two marked vertices, sender and receiver, and analyze its application to perfect state transfer on complete bipartite graphs. First, the situation with both the sender and the receiver vertex in the same part of the graph is considered. We show that in this case the dynamics of the quantum walk is independent of the size of the second part and reduces to the one for the star graph where perfect state transfer is achieved. Second, we consider the situation where the sender and the receiver vertex are in the opposite parts of the graph. In such a case, the state transfer with unit fidelity is achieved only when the parts have the same size.


Quantum walk Perfect state transfer Bipartite graph 



We acknowledge the financial support from RVO 14000 and from Czech Technical University in Prague under Grant No. SGS16/241/OHK4/3T/14. MŠ is grateful for the financial support from GAČR under Grant No. 14-02901P.


  1. 1.
    Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Meyer, D.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Strauch, F.W.: Connecting the discrete-and continuous-time quantum walks. Phys. Rev. A 74, 030301 (2006)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Childs, A.M.: On the relationship between continuous- and discrete-time quantum walk. Commun. Math. Phys. 294, 581 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Shikano, Y.: From discrete time quantum walk to continuous time quantum walk in limit distribution. J. Comput. Theor. Nanosci. 10, 1558 (2013)CrossRefGoogle Scholar
  7. 7.
    Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process. 1, 35 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Childs, A.M., Goldstone, J.: Spatial search and the Dirac equation. Phys. Rev. A 70, 042312 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mülken, O., Bierbaum, V., Blumen, A.: Coherent exciton transport in dendrimers and continuous-time quantum walks. J. Chem. Phys. 124, 124905 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Mülken, O., Pernice, V., Blumen, A.: Quantum transport on small-world networks: a continuous-time quantum walk approach. Phys. Rev. E 76, 051125 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Mülken, O., Blumen, A.: Continuous-time quantum walks: models for coherent transport on complex networks. Phys. Rep. 502, 37 (2011)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Janmark, J., Meyer, D.A., Wong, T.G.: Global symmetry is unnecessary for fast quantum search. Phys. Rev. Lett. 112, 210502 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Novo, L., Chakraborty, S., Mohseni, M., Neven, H., Omar, Y.: Systematic dimensionality reduction for quantum walks: optimal spatial search and transport on non-regular graphs. Sci. Rep. 5, 13304 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Meyer, D.A., Wong, T.G.: Connectivity is a poor indicator of fast quantum search. Phys. Rev. Lett. 114, 110503 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Chakraborty, S., Novo, L., Ambainis, A., Omar, Y.: Spatial search by quantum walk is optimal for almost all graphs. Phys. Rev. Lett. 116, 100501 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of 33rd Annual Symposium on Theory of Computing, 37. ACM, New York (2001)Google Scholar
  19. 19.
    Mackay, T.D., Bartlett, S.D., Stephenson, L.T., Sanders, B.C.: Quantum walks in higher dimensions. J. Phys. A 35, 2745 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hillery, M., Bergou, J., Feldman, E.: Quantum walks based on an interferometric analogy. Phys. Rev. A 68, 032314 (2003)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Feldman, E., Hillery, M.: Scattering theory and discrete-time quantum walks. Phys. Lett. A 324, 277 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Feldman, E., Hillery, M.: Modifying quantum walks: a scattering theory approach. J. Phys. A 40, 11343 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Andrade, F.M., da Luz, M.G.E.: Equivalence between discrete quantum walk models in arbitrary topologies. Phys. Rev. A 80, 052301 (2009)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Venancio, B.F., Andrade, F.M., da Luz, M.G.E.: Unveiling and exemplifying the unitary equivalence of discrete time quantum walk models. J. Phys. A 46, 165302 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Szegedy, M.: Quantum speed-up of markov chain based algorithms. In: Proceedings of the 45th Symposium on Foundations of Computer Science, pp. 32–41 (2004)Google Scholar
  26. 26.
    Patel, A., Raghunathan, K.S., Rungta, P.: Quantum random walks do not need a coin toss. Phys. Rev. A 71, 032347 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Patel, A., Raghunathan, K.S., Rahaman, MdA: Search on a hypercubic lattice using a quantum random walk. II. d=2. Phys. Rev. A 82, 032331 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Falk, M.: Quantum search on the spatial grid. arXiv:1303.4127 (2013)
  29. 29.
    Ambainis, A., Portugal, R., Nahimov, N.: Spatial search on grids with minimum memory. Quantum Inf. Comput. 15, 1233 (2015)MathSciNetGoogle Scholar
  30. 30.
    Portugal, R., Boettcher, S., Falkner, S.: One-dimensional coinless quantum walks. Phys. Rev. A 91, 052319 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Santos, R.A.M., Portugal, R., Boettcher, S.: Moments of coinless quantum walks on lattices. Quantum Inf. Process. 14, 3179 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Portugal, R., Santos, R.A.M., Fernandes, T.D., Gonalves, D.N.: The staggered quantum walk model. Quantum Inf. Process. 15, 85 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Portugal, R.: Staggered quantum walks on graphs. Phys. Rev. A 93, 062335 (2016)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 1099–1108 (2005)Google Scholar
  36. 36.
    Potoček, V., Gábris, A., Kiss, T., Jex, I.: Optimized quantum random-walk search algorithms. Phys. Rev. A 79, 012325 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Hein, B., Tanner, G.: Quantum search algorithms on the hypercube. J. Phys. A 42, 085303 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Reitzner, D., Hillery, M., Feldman, E., Bužek, V.: Quantum searches on highly symmetric graphs. Phys. Rev. A 79, 012323 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    Santos, R.A.M.: Szegedys quantum walk with queries. Quantum Inf. Process. 15, 4461 (2016)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Feldman, E., Hillery, M., Lee, H.W., Reitzner, D., Zheng, H., Bužek, V.: Finding structural anomalies in graphs by means of quantum walks. Phys. Rev. A 82, 040301(R) (2010)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Hillery, M., Zheng, H., Feldman, E., Reitzner, D., Bužek, V.: Quantum walks as a probe of structural anomalies in graphs. Phys. Rev. A 85, 062325 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Cottrell, S., Hillery, M.: Finding structural anomalies in star graphs: a general approach. Phys. Rev. Lett. 112, 030501 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81, 042330 (2010)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    Kurzynski, P., Wojcik, A.: Discrete-time quantum walk approach to state transfer. Phys. Rev. A 83, 062315 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    Yalcinkaya, I., Gedik, Z.: Qubit state transfer via discrete-time quantum walks. J. Phys. A 48, 225302 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Zhan, X., Qin, H., Bian, Z.H., Li, J., Xue, P.: Perfect state transfer and efficient quantum routing: a discrete-time quantum-walk approach. Phys. Rev. A 90, 012331 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    Hein, B., Tanner, G.: Wave communication across regular lattices. Phys. Rev. Lett. 103, 260501 (2009)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Kendon, V.M., Tamon, C.: Perfect state transfer in quantum walks on graphs. J. Comput. Theor. Nanosci. 8, 422 (2011)CrossRefGoogle Scholar
  50. 50.
    Barr, K., Proctor, T., Allen, D., Kendon, V.: Periodicity and perfect state transfer in quantum walks on variants of cycles. Quantum Inf. Comput. 14, 417 (2014)MathSciNetGoogle Scholar
  51. 51.
    Štefaňák, M., Skoupý, S.: Perfect state transfer by means of discrete-time quantum walk search algorithms on highly symmetric graphs. Phys. Rev. A 94, 022301 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)ADSCrossRefGoogle Scholar
  53. 53.
    Krovi, H., Brun, T.A.: Quantum walks on quotient graphs. Phys. Rev. A 75, 062332 (2007)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PragueStaré MěstoCzech Republic

Personalised recommendations