Theoretical and computational analysis of the quantum radar cross section for simple geometrical targets

  • Matthew J. Brandsema
  • Ram M. Narayanan
  • Marco Lanzagorta


The concept of the quantum radar cross section (QRCS) has generated interest due to its promising feature of enhanced side lobe target visibility in comparison to the classical radar cross section. Researchers have simulated the QRCS for very limited geometries and even developed approximations to reduce the computational complexity of the simulations. This paper develops an alternate theoretical framework for calculating the QRCS. This new framework yields an alternative form of the QRCS expression in terms of Fourier transforms. This formulation is much easier to work with mathematically and allows one to derive analytical solutions for various geometries, which provides an explanation for the aforementioned sidelobe advantage. We also verify the resulting equations by comparing with numerical simulations, as well as provide an error analysis of these simulations to ensure the accuracy of the results. Comparison of our simulation results with the analytical solutions reveal that they agree with one another extremely well.


Quantum radar cross section Simulations Quantum radar Fourier transform 



We thank Dr. Kyle Gallagher for providing his insight and many thought provoking conversations which has helped greatly in developing the ideas presented in this paper.


  1. 1.
    Lanzagorta, M.: Low brightness quantum radar. In: Proceedings of the SPIE Conference on Radar Sensor Technology XIX and Active and Passive Signatures VI, Baltimore, MD, 946113 (2015)Google Scholar
  2. 2.
    Lanzagorta, M.: Quantum Radar. Morgan & Claypool, San Rafael (2012)zbMATHGoogle Scholar
  3. 3.
    Menzel, E.P., Di Candia, R., Deppe, F., Eder, P., Zhong, L., Ihmig, M., Haeberlein, M., Baust, A., Hoffmann, E., Ballester, D., Inomata, K., Yamamoto, T., Nakamura, Y., Solano, E., Marx, A., Gross, R.: Path entanglement of continuous-variable quantum microwaves. Phys. Rev. Lett. 109, 250502 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Emary, C., Trauzettel, B., Beenakker, C.W.J.: Emission of polarized-entangled microwave photons from a pair of quantum dots. Phys. Rev. Lett. 95, 127401 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Barzanjeh, S., Guha, S., Weedbrook, C., Vitali, D., Shapiro, J., Pirandola, S.: Microwave quantum illumination. Phys. Rev. Lett. 114, 080503 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Romero, G., Garcia-Ripoll, J.J., Solano, E.: Microwave photon detector in circuit QED. Phys. Rev. Lett. 102, 173602 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Woolley, M.J., Lang, C., Eichler, C., Wallraff, A., Blais, A.: Signatures of Hong–Ou–Mandel interference at microwave frequencies. New J. Phys. 15, 105025 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Tan, S.-H., Erkmen, B.I., Giovannetti, V., Guha, S., Lloyd, S., Maccone, L., Pirandola, S., Shapiro, J.: Quantum illumination with Gaussian states. Phys. Rev. Lett. 101, 253601 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Design considerations for quantum radar implementation. In: Proceedings of the SPIE Conference on Radar Sensor Technology XVIII, Baltimore, MD, 90770T (2014)Google Scholar
  10. 10.
    Jiang, K., Lee, H., Gerry, C.C., Dowling, J.P.: Super-resolving quantum radar: coherent-state sources with homodyne detection suffice to beat the diffraction limit. J. Appl. Phys. 114, 193102 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Wang, Q., Zhang, Y., Yang, X., Xu, L., Yang, C.: Super-resolving quantum LADAR with even coherent states sources at shot noise limit. In: Proceedings of the International Conference on Optoelectronics and Microelectronics (ICOM), Changchun, China, pp. 19–22 (2015)Google Scholar
  12. 12.
    Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Analytical formulation of the quantum electromagnetic cross section. In: Proceedings of the SPIE Conference on Radar Sensor Technology XX, Baltimore, MD, 98291H (2016)Google Scholar
  13. 13.
    Lanzagorta, M.: Quantum radar cross sections. In: Proceedings of the SPIE Conference on Quantum Optics, Brussels, Belgium, 77270K (2010)Google Scholar
  14. 14.
    Berestetskii, V.B., Lifshitz, E.M., Pitaevskii, L.P.: Quantum Electrodynamics, 2nd edn. Pergamon Press Ltd., Oxford (1982)Google Scholar
  15. 15.
    Kang, L., Huai-Tie, X., Hong-Qi, F.: Analysis and simulation of quantum radar cross section. Chin. Phys. Lett. 31, 034202 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Liu, K., Xiao, H., Fan, H., Fu, Q.: Analysis of quantum radar cross section and its influence on target detection performance. IEEE Photonics Technol. Lett. 26, 1146–1149 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Lin, Y., Guo, L., Cai, K.: An efficient algorithm for the calculation of quantum radar cross section of flat objects. In: Progress in Electromagnetics Research Symposium Proceedings, Guangzhou, China, pp. 39–43 (2014)Google Scholar
  18. 18.
    Lanzagorta, M., Venegas-Andraca, S.: Algorithmic analysis of quantum radar cross sections. In: Proceedings of the SPIE Conference of Radar Sensor Technology XIX and Active and Passive Signatures VI, Baltimore, MD, 946112 (2015)Google Scholar
  19. 19.
    Xu, S.-L., Hu, Y.-H., Zhao, N.-X., Wang, Y.-Y., Li, L., Guo, L.-R.: Impact of metal target’s atom lattice structure on its quantum radar cross-section. Acta Phys. Sin. 64, 154203 (2015)Google Scholar
  20. 20.
    Balanis, C.A.: Advanced Engineering Electromagnetics, 2nd edn. Wiley, New York (2012)Google Scholar
  21. 21.
    Ruck, G.T., Barrick, D.E., Stuart, W.D., Krichbaum, C.K.: Radar Cross Section Handbook Volumes 1 and 2. Plenum Press, New York (1970)CrossRefGoogle Scholar
  22. 22.
    Mitra, S.K.: Digital Signal Processing. A Computer Based Approach. McGraw-Hill, New York (2010)Google Scholar
  23. 23.
    Balanis, C.A.: Antenna Theory, Analysis and Design, 3rd edn. Wiley, Hoboken (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electrical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Naval Research LaboratoryWashingtonUSA

Personalised recommendations