Emulation of complex open quantum systems using superconducting qubits

  • Sarah Mostame
  • Joonsuk Huh
  • Christoph Kreisbeck
  • Andrew J. Kerman
  • Takatoshi Fujita
  • Alexander Eisfeld
  • Alán Aspuru-Guzik


With quantum computers being out of reach for now, quantum simulators are alternative devices for efficient and accurate simulation of problems that are challenging to tackle using conventional computers. Quantum simulators are classified into analog and digital, with the possibility of constructing “hybrid” simulators by combining both techniques. Here we focus on analog quantum simulators of open quantum systems and address the limit that they can beat classical computers. In particular, as an example, we discuss simulation of the chlorosome light-harvesting antenna from green sulfur bacteria with over 250 phonon modes coupled to each electronic state. Furthermore, we propose physical setups that can be used to reproduce the quantum dynamics of a standard and multiple-mode Holstein model. The proposed scheme is based on currently available technology of superconducting circuits consist of flux qubits and quantum oscillators.


Quantum information Quantum algorithms and protocols Quantum interference devices Superconducting circuits Quantum simulation Photochemistry 


  1. 1.
    Alexandrov, A.S., Mott, N.F.: Polarons and Bipolarons. World Scientific, Singapore (1995)Google Scholar
  2. 2.
    Freericks, J.K., Jarrell, M., Scalapino, D.J.: Holstein model in infinite dimensions. Phys. Rev. B 48, 6302 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    Ciuchi, S., de Pasquale, F., Fratini, S., Feinberg, D.: Dynamical mean-field theory of the small polaron. Phys. Rev. B 56, 4494 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Bonča, J., Trugman, S.A., Batistić, I.: Holstein polaron. Phys. Rev. B 60, 1633 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Romero, A.H., Brown, D.W., Lindenberg, K.: Exact weak-coupling radius of the Holstein polaron in one, two, and three dimensions. Phys. Lett. A 254, 287 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Romero, A.H., Brown, D.W., Lindenberg, K.: Polaron effective mass, band distortion, and self-trapping in the Holstein molecular-crystal model. Phys. Rev. B 59, 13728 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Romero, A.H., Brown, D.W., Lindenberg, K.: Effects of dimensionality and anisotropy on the Holstein polaron. Phys. Rev. B 60, 14080 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Hoffmann, M., Soos, Z.G.: Optical absorption spectra of the Holstein molecular crystal for weak and intermediate electronic coupling. Phys. Rev. B 66, 024305 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Barišić, O.S.: Calculation of excited polaron states in the Holstein model. Phys. Rev. B 69, 064302 (2004)ADSGoogle Scholar
  10. 10.
    Spencer, P.E., Samson, J.H., Kornilovitch, P.E., Alexandrov, A.S.: Effect of electron–phonon interaction range on lattice polaron dynamics: a continuous-time quantum Monte Carlo study. Phys. Rev. B 71, 184310 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Berciu, M.: Green’s function of a dressed particle. Phys. Rev. Lett. 97, 036402 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Goodvin, G.L., Berciu, M., Sawatzky, G.A.: Green’s function of the Holstein polaron. Phys. Rev. B 74, 245104 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Prokof’ev, N.V., Svistunov, B.V.: Bold diagrammatic Monte Carlo: a generic sign-problem tolerant technique for polaron models and possibly interacting many-body problems. Phys. Rev. B 77, 125101 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Kreisbeck, C., Kramer, T., Rodríguez, M., Hein, B.: High-performance solution of hierarchical equations of motion for studying energy transfer in light-harvesting complexes. J. Chem. Theory Comput. 7, 2166 (2011)CrossRefGoogle Scholar
  15. 15.
    Kreisbeck, C., Kramer, T.: Long-lived electronic coherence in dissipative exciton-dynamics of light-harvesting complexes. J. Phys. Chem. Lett. 3, 2828 (2012)CrossRefGoogle Scholar
  16. 16.
    Kreisbeck, C., Kramer, T., Aspuru-Guzik, A.: Scalable high-performance algorithm for the simulation of exciton dynamics. Application to the light-harvesting complex II in the presence of resonant vibrational modes. J. Chem. Theory Comput. 10, 4045 (2014)CrossRefGoogle Scholar
  17. 17.
    Fujita, T., Brookes, J.C., Saikin, S.K., Aspuru-Guzik, A.: Memory-assisted exciton diffusion in the chlorosome light-harvesting antenna of green sulfur bacteria. J. Phys. Chem. Lett. 3, 2357 (2012)CrossRefGoogle Scholar
  18. 18.
    Fujita, T., Huh, J., Saikin, S.K., Brookes, J.C., Aspuru-Guzik, A.: Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria. Photosynth. Res. 120, 273 (2014)CrossRefGoogle Scholar
  19. 19.
    Ishizaki, A., Fleming, G.R.: Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equations approach. J. Chem. Phys. 130, 234111 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Ishizaki, A., Fleming, G.R.: Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl. Acad. Sci. USA 106, 17255 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Strunz, W.T., Diósi, L., Gisin, N.: Open system dynamics with non-Markovian quantum trajectories. Phys. Rev. Lett. 82, 1801 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Süß, D., Eisfeld, A., Strunz, W. T.: Hierarchy of stochastic pure states for open quantum system dynamics. arXiv:1402.4647 (2014)
  23. 23.
    Strümpfer, J., Schulten, K.: Light harvesting complex II B850 excitation dynamics. J. Chem. Phys. 131, 225101 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16, 507 (1982)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1986)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Buluta, I., Nori, F.: Quantum simulators. Science 326, 108 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Mostame, S., Rebentrost, P., Eisfeld, A., Kerman, A.J., Tsomokos, D.I., Aspuru-Guzik, A.: Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes. New J. Phys. 14, 105013 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Nation, P.D., Johansson, J.R., Blencowe, M.P., Nori, F.: Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 84, 1 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Herrera, F., Krems, R.V.: Tunable Holstein model with cold polar molecules. Phys. Rev. A 84, 051401(R) (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Herrera, F., Madison, K.W., Krems, R.V., Berciu, M.: Investigating polaron transitions with polar molecules. Phys. Rev. Lett. 110, 223002 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Hague, J.P., MacCormick, C.: Quantum simulation of electron–phonon interactions in strongly deformable materials. New J. Phys. 14, 033019 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Stojanovic, V.M., Shi, T., Bruder, C., Cirac, J.I.: Quantum simulation of small-polaron formation with trapped ions. Phys. Rev. Lett. 109, 250501 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Mezzacapo, A., Casanova, J., Lamata, L., Solano, E.: Digital quantum simulation of the Holstein model in trapped ions. Phys. Rev. Lett. 109, 200501 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Mei, F., Stojanović, V.M., Siddiqi, I., Tian, L.: Analog superconducting quantum simulator for Holstein polarons. Phys. Rev. B 88, 224502 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Stojanović, V.M., Vanevic, M., Demler, E., Tian, L.: Transmon-based simulator of nonlocal electron–phonon coupling: a platform for observing sharp small-polaron transitions. Phys. Rev. B 89, 144508 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Paauw, F.G., Fedorov, A., Harmans, C.J.P.M., Mooij, J.E.: Tuning the gap of a superconducting flux qubit. Phys. Rev. Lett. 102, 090501 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    Niskanen, A.O., Harrabi, K., Yoshihara, F., Nakamura, Y., Lloyd, S., Tsai, J.S.: Quantum coherent tunable coupling of superconducting qubit. Science 316, 723 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    Ashhab, S., Niskanen, A.O., Harrabi, K., Nakamura, Y., Picot, T., de Groot, P.C., et al.: Interqubit coupling mediated by a high-excitation-energy quantum object. Phys. Rev. B 77, 014510 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Bertet, P., Chiorescu, I., Burkard, G., Semba, K., Harmans, C.J.P.M., DiVincenzo, D.P., et al.: Dephasing of a superconducting qubit induced by photon noise. Phys. Rev. Lett. 95, 257002 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    Chiorescu, I., Nakamura, Y., Harmans, C.J.P.M., Mooij, J.E.: Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    Valenzuela, S.O., Oliver, W.D., Berns, D.M., Berggren, K.K., Levitov, L.S., Orlando, T.P.: Microwave-induced cooling of a superconducting qubit. Science 314, 1589 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    Roden, J., Eisfeld, A., Dvořák, M., Bünermann, O., Stienkemeier, F.: Vibronic line shapes of PTCDA oligomers in helium nanodroplets. J. Chem. Phys. 134, 054907 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    Spano, F.C., Silvestri, L.: Multiple mode exciton-vibrational coupling in H-aggregates: synergistic enhancement of the quantum yield. J. Chem. Phys. 132, 094704 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    Kerman, A.J.: Quantum information processing using quasiclassical electromagnetic interactions between qubits and electrical resonators. New J. Phys. 15, 123011 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    Huh, J., Mostame, S., Fujita, T., Yung, M.H., Aspuru-Guzik, A.: Linear-algebraic bath transformation for simulating complex open quantum systems. New J. Phys. 16, 123008 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    Manske, A.K., Glaeser, J., Kuypers, M.M.M., Overmann, J.: Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the black sea. Appl. Environ. Microbiol. 71, 8049 (2005)CrossRefGoogle Scholar
  50. 50.
    Oostergetel, G.T., van Amerongen, H., Boekema, E.J.: The chlorosome: a prototype for efficient light harvesting in photosynthesis. Photosynth. Res. 104, 245 (2010)CrossRefGoogle Scholar
  51. 51.
    Lambert, N., Chen, Y.-N., Cheng, Y.-C., Li, C.-M., Chen, G.-Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10 (2013)CrossRefGoogle Scholar
  52. 52.
    Ganapathy, S., Oostergetel, G.T., Wawrzyniak, P.K., Reus, M., Gomez Maqueo Chew, A., Buda, F., et al.: Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proc. Natl. Acad. Sci. 106, 8525 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    Sawaya, N.P.D., Huh, J., Saikin, S.K., Fujita, T., Aspuru-Guzik, A.: Fast delocalization leads to robust long-range excitonic transfer in a large quantum chlorosome model. Nano Lett. 15, 1722 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    Kerman, A.J., Oliver, W.D.: High-fidelity quantum operations on superconducting qubits in the presence of noise Phys. Rev. Lett. 101, 070501 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    Guo, C.: Using density matrix renormalization group to study open quantum systems. Ph.D. Thesis, Ludwig-Maximilians-Universität (2012)Google Scholar
  56. 56.
    Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)MATHGoogle Scholar
  57. 57.
    Tanimura, Y., Kubo, R.: Time evolution of a quantum system in contact with a nearly Gaussian–Markoffian noise bath. J. Phys. Soc. Jpn. 58, 101 (1989)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Tanimura, Y.: Reduced hierarchy equations of motion approach with Drude plus Brownian spectral distribution: probing electron transfer processes by means of two-dimensional correlation spectroscopy. J. Chem. Phys. 137, 22A550 (2012)CrossRefGoogle Scholar
  59. 59.
    Kreisbeck, C., Aspuru-Guzik, A.: Efficiency of energy funneling in the photosystem II supercomplex of higher plants. Chem. Sci. 7, 4174 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sarah Mostame
    • 1
    • 4
  • Joonsuk Huh
    • 1
    • 5
  • Christoph Kreisbeck
    • 1
  • Andrew J. Kerman
    • 2
  • Takatoshi Fujita
    • 1
    • 6
  • Alexander Eisfeld
    • 3
  • Alán Aspuru-Guzik
    • 1
  1. 1.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA
  2. 2.Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonUSA
  3. 3.Max-Planck-Institut für Physik komplexer SystemeDresdenGermany
  4. 4.Intel LabsHillsboroUSA
  5. 5.Mueunjae Institute for Chemistry (MIC), Department of ChemistryPohang University of Science and Technology (POSTECH)PohangKorea
  6. 6.Institute of Molecular ScienceOkazakiJapan

Personalised recommendations