T-bulge-shaped quantum router

  • Lin Liu
  • Jing LuEmail author


The transport properties of a single photon scattered by a two-level system (TLS) in a T-bulge-shaped waveguide have been studied, which is made of two coupled-resonator waveguides (CRWs), an infinite CRW and a semi-infinite CRW with \(N-1\) FP cavities below the node. The spontaneous emission of the TLS directs single photons from one CRW to the other. The \(N-1\) FP cavities effect the extreme point’s value and location of the propagation coefficient and incident energy curve.


Single photon Quantum router Coupled-resonator waveguides Transport property 



We are thankful to Professor Zhou Lan for her useful discussion. This work is supported by the National Fundamental Research Program of China (the 973 Program) under Grant No. 2012CB922103 and the National Natural Science Foundation of China under Grants Nos. 11374095, 11422540, 11434011, 11575058.


  1. 1.
    Kimble, H.J.: The quantum internet. Nature (Lond.) 453, 1023–1030 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Zhou, L., Gong, Z.R., Liu, Y.-X., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Zhou, L., Yang, L.P., Li, Y., Sun, C.P.: Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111, 103604 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Zhou, L., Lu, J., Sun, C.P.: Coherent control of photon transmission: slowing light in a coupled resonator waveguide doped with \(\wedge \) atoms. Phys. Rev. A 76, 012313 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Zhou, L., Hu, F.M., Lu, J., Sun, C.P.: Electromagnetic manipulation for the anti-Zeno effect in an engineered quantum tunneling process. Phys. Rev. A 74, 032102 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Zhou, L., Turek, Y., Sun, C.P., Nori, F.: Weak-value amplification of light deflection by a dark atomic ensemble. Phys. Rev. A 88, 053815 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Zhou, L., Dong, H., Liu, Y.-X., Sun, C.P., Nori, F.: Quantum supercavity with atomic mirrors. Phys. Rev. A 78, 063827 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Zhou, L., Lu, J., Zhou, D.L., Sun, C.P.: Quantum theory for spatial motion of polaritons in inhomogeneous fields. Phys. Rev. A 77, 023816 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Zhou, L., Gao, Y.B., Song, Z., Sun, C.P.: Coherent output of photons from coupled superconducting transmission line resonators controlled by charge qubits. Phys. Rev. A 77, 013831 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Zhou, L., Yang, S., Liu, Yu-xi, Sun, C.P., Nori, F.: Quantum zeno switch for single-photon coherent transport. Phys. Rev. A 80, 062109 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Zhou, L., Kuang, L.-M.: Zeno-anti-Zeno crossover via external fields in a one-dimensional coupled-cavity waveguide. Phys. Rev. A 82, 042113 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Zhou, L., Chang, Y., Dong, H., Kuang, L.M., Sun, C.P.: Inherent Mach–Zehnder interference with which-way detection for single-particle scattering in one dimension. Phys. Rev. A 85, 013806 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Li, Q., Zhou, L., Sun, C.P.: Waveguide quantum electrodynamics: controllable channel from quantum interference. Phys. Rev. A 89, 063810 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Xiong, W., Jin, D.-Y., Jing, J., Lam, C.-H., You, J.Q.: Controllable coupling between a nanomechanical resonator and a coplanar-waveguide resonator via a superconducting flux qubit. Phys. Rev. A 91, 052318 (2015)CrossRefGoogle Scholar
  15. 15.
    Wang, Z.H., Zhou, L., Li, Y., Sun, C.P.: Controllable single-photon frequency converter via a one-dimensional waveguide. Phys. Rev. A 89, 053813 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Agarwal, G.S., Huang, Sumei: Optomechanical systems as single photon routers. Phys. Rev. A 85, 021801(R) (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Lu, J., Zhou, L., Kuang, L.M., Nori, F.: Single-photon router: coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89, 013805 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Lemr, K., Bartkiewicz, K., Černoch, A., Soubusta, J.: Resource-efficient linear-optical quantum router. Phys. Rev. A 89, 062331 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Yuan, X.X., Ma, J.-J., Hou, P.-Y., Chang, X.-Y., Zu, C., Duan, L.-M.: Experimental demonstration of a quantum router. Sci. Rep. 5, 12452 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Lu, J., Wang, Z.H., Zhou, L.: T-shaped single-photon router. Opt. Exp. 23, 22955 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Jonckheere, E., Langbein, F.C., Schirmer, S.G.: Information transfer fidelity in spin networks and ring-based quantum routers. Quantum Inf Process 14, 4751–4785 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pawela, L., Puchała, Z.: Quantifying channels output similarity with applications to quantum control. Quantum Inf Process 15, 1455–1468 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Korotkov, A.N.: Special issue on quantum computing with superconducting qubits. Quantum Inf Process 8, 51–54 (2009)CrossRefGoogle Scholar
  24. 24.
    Guo, Y., Zhao, Y.: High-efficient quantum secret sharing based on the Chinese remainder theorem via the orbital angular momentum entanglement analysis. Quantum Inf Process 12, 1125–1139 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Martens, C., et al.: Photon transport in one-dimensional systems coupled to three-level quantum impurities. New J. Phys. 15, 083019 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Lombardo, F., et al.: Photon localization versus population trapping in a coupled-cavity array. Phys. Rev. A 89, 053826 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Qin, W., et al.: Controllable single-photon transport between remote coupled-cavity arrays. Phys. Rev A 93, 032337 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Sayrin, C., Junge, C., Mitsch, R., Albrecht, B., O‘Shea, D., Schneeweiss, P., Volz, J., Rauschenbeutel, A.: Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X 5, 041036 (2015)Google Scholar
  29. 29.
    Xia, K.: Tunable slowing, storing, and releasing of a weak microwave field. Phys. Rev. A 89, 023815 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Chen, X.Y., Zhang, F.Y., Li, C.: Single-photon quantum router by two distant artificial atoms. J. Opt. Soc. Am. B. 33, 000583 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of PhysicsHunan Normal UniversityChangshaChina
  2. 2.North China Institute of Aerospace EngineeringLangfangChina

Personalised recommendations