Spectral properties of reduced fermionic density operators and parity superselection rule

Article

Abstract

We consider pure fermionic states with a varying number of quasiparticles and analyze two types of reduced density operators: one is obtained via tracing out modes, the other is obtained via tracing out particles. We demonstrate that spectra of mode-reduced states are not identical in general and fully characterize pure states with equispectral mode-reduced states. Such states are related via local unitary operations with states satisfying the parity superselection rule. Thus, valid purifications for fermionic density operators are found. To get particle-reduced operators for a general system, we introduce the operation \(\varPhi (\varrho ) = \sum _i a_i \varrho a_i^{\dag }\). We conjecture that spectra of \(\varPhi ^p(\varrho )\) and conventional p-particle reduced density matrix \(\varrho _p\) coincide. Non-trivial generalized Pauli constraints are derived for states satisfying the parity superselection rule.

Keywords

Fermionic state Reduced density matrix Tracing out modes Tracing out particles Spectrum Equispectrality Superselection rule Generalized Pauli constraints 

References

  1. 1.
    Landauer, R.: The physical nature of information. Phys. Lett. A 217, 188 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  3. 3.
    Pauli, W.: Über den Einflußder Geschwindigkeitsabhängigkeit der Elektronenmasse auf den Zeemaneffekt. Z. Phys. 31, 373 (1925)ADSCrossRefMATHGoogle Scholar
  4. 4.
    Uhlenbeck, G.E., Goudsmit, S.: Zuschriften und vorläufige Mitteilungen. Die Naturwissenschaften 13, 953 (1925)ADSCrossRefGoogle Scholar
  5. 5.
    Pauli, W.: Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Z. Phys. 31, 765 (1925)ADSCrossRefMATHGoogle Scholar
  6. 6.
    Fermi, E.: Zur Quantelung des idealen einatomigen Gases. Z. Phys. 36, 902 (1926)ADSCrossRefMATHGoogle Scholar
  7. 7.
    Dirac, P.A.M.: On the theory of quantum mechanics. Proc. R. Soc. A 112, 661 (1926)ADSCrossRefMATHGoogle Scholar
  8. 8.
    Jordan, P., Wigner, E.P.: Über das Paulische Äquivalenzverbot. Z. Phys. 47, 631 (1928)ADSCrossRefMATHGoogle Scholar
  9. 9.
    Fock, V.: Konfigurationsraum und zweite Quantelung. Z. Phys. 75, 622 (1932)ADSCrossRefMATHGoogle Scholar
  10. 10.
    Fierz, M.: Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin. Helv. Phys. Acta 12, 3 (1939)CrossRefMATHGoogle Scholar
  11. 11.
    Pauli, W.: The connection between spin and statistics. Phys. Rev. 58, 716 (1940)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Wick, G.C., Wightman, A.S., Wigner, E.P.: The intrinsic parity of elementary particles. Phys. Rev. 88, 101 (1952)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Wightman, A.S.: Superselection rules; old and new. Il Nuovo Cim. B 110, 751 (1995)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Cisneros, C., Martínez-y-Romero, R.P., Núñez-Yépez, H.N., Salas-Brito, A.L.: Limitations on the superposition principle: superselection rules in non-relativistic quantum mechanics. Eur. J. Phys. 19, 237 (1998)CrossRefMATHGoogle Scholar
  15. 15.
    Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hegerfeldt, G.C., Kraus, K., Wigner, E.P.: Proof of the fermion superselection rule without the assumption of time-reversal invariance. J. Math. Phys. 9, 2029 (1968)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Bargman, V.: On unitary ray representations of continuous groups. Ann. Math. 59, 1 (1954)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gonzalez-Garcia, M.C., Maltoni, M.: Phenomenology with massive neutrinos. Phys. Rep. 460, 1 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Pontecorvo, B.: Neutrino experiments and the problem of conservation of leptonic charge. Sov. Phys. JETP 26, 984 (1968)ADSGoogle Scholar
  20. 20.
    Xu, S.-Y., et al.: Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Lu, L., et al.: Experimental observation of Weyl points. Science 349, 622 (2015)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Xu, S.-Y., et al.: Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748 (2015)CrossRefGoogle Scholar
  23. 23.
    Tsvelik, A.M.: Quantum Field Theory in Condensed Matter Physics, 2nd edn. Cambridge University Press, Cambridge (2003)CrossRefMATHGoogle Scholar
  24. 24.
    Moriya, H.: Some aspects of quantum entanglement for CAR systems. Lett. Math. Phys. 60, 109 (2002)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Araki, H., Lieb, E.H.: Entropy inequalities. Commun. Math. Phys. 18, 160 (1970)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Friis, N., Lee, A.R., Bruschi, D.E.: Fermionic-mode entanglement in quantum information. Phys. Rev. A 87, 022338 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Friis, N.: Reasonable fermionic quantum information theories require relativity. New J. Phys. 18, 033014 (2016)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Carlson, B.C., Keller, J.M.: Eigenvalues of density matrices. Phys. Rev. 121, 659 (1961)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Coleman, A.J.: Structure of fermion density matrices. Rev. Mod. Phys. 35, 668 (1963)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Ando, T.: Properties of fermion density matrices. Rev. Mod. Phys. 35, 690 (1963)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Mazziotti, D.A.: Structure of fermionic density matrices: complete \(N\)-representability conditions. Phys. Rev. Lett. 108, 263002 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Borland, R.E., Dennis, K.: The conditions on the one-matrix for three-body fermion wavefunctions with one-rank equal to six. J. Phys. B 5, 7 (1972)ADSCrossRefGoogle Scholar
  33. 33.
    Schilling, C., Gross, D., Christandl, M.: Pinning of fermionic occupation numbers. Phys. Rev. Lett. 110, 040404 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Benavides-Riveros, C.L., Springborg, M.: Quasipinning and selection rules for excitations in atoms and molecules. Phys. Rev. A 92, 012512 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Schilling, C.: Hubbard model: pinning of occupation numbers and role of symmetries. Phys. Rev. B 92, 155149 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Cahill, K.E., Glauber, R.J.: Density operators for fermions. Phys. Rev. A 59, 1538 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    Bravyi, S.: Classical Capacity of Fermionic Product Channels. arXiv: quant-ph//0507282
  38. 38.
    Fannes, M., Van Ryn, N.: Connecting the von Neumann and Rényi entropies for fermions. J. Phys. A Math. Theor. 45, 385003 (2012)ADSCrossRefMATHGoogle Scholar
  39. 39.
    Sen(De), A., Sen, U., Gromek, B., Bruß, D., Lewenstein, M.: Capacities of quantum channels for massive bosons and fermions. Phys. Rev. Lett. 95, 260503 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    D’Ariano, G.M., Manessi, F., Perinotti, P., Tosini, A.: The Feynman problem and fermionic entanglement: fermionic theory versus qubit theory. Int. J. Mod. Phys. A 29, 1430025 (2014)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Zimborás, Z., Zeier, R., Keyl, M., Schulte-Herbrüggen, T.: A dynamic systems approach to fermions and their relation to spins. EPJ Quantum Technol. 1, 11 (2014)CrossRefGoogle Scholar
  42. 42.
    D’Ariano, G.M., Manessi, F., Perinotti, P., Tosini, A.: Fermionic computation is non-local tomographic and violates monogamy of entanglement. EPL 107, 20009 (2014)CrossRefGoogle Scholar
  43. 43.
    Bravyi, S.B., Kitaev, AYu.: Fermionic quantum computation. Ann. Phys. 298, 210 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Berezin, F.A.: The Method of Second Quantization. Academic Press, New York (1966)MATHGoogle Scholar
  45. 45.
    Wiseman, H.M., Vaccaro, J.A.: Entanglement of indistinguishable particles shared between two parties. Phys. Rev. Lett. 91, 097902 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    Evans, D.E.: Completely positive quasi-free maps on the CAR algebra. Commun. Math. Phys. 70, 53 (1979)ADSCrossRefMATHGoogle Scholar
  47. 47.
    Dierckx, B., Fannes, M., Pogorzelska, M.: Fermionic quasifree states and maps in information theory. J. Math. Phys. 49, 032109 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Araki, H., Wyss, W.: Representations of canonical anticommutation relations. Helv. Phys. Acta 37, 136 (1964)MathSciNetMATHGoogle Scholar
  49. 49.
    Bravyi, S.: Lagrangian representation for fermionic linear optics. Quantum Inf. Comput. 5, 216 (2005)MathSciNetMATHGoogle Scholar
  50. 50.
    Greplova, E.: Quantum Information with Fermionic Gaussian States. Master thesis, University of Munich (2013)Google Scholar
  51. 51.
    Puspus, X.M., Villegas, K.H., Paraan, F.N.C.: Entanglement spectrum and number fluctuations in the spin-partitioned BCS ground state. Phys. Rev. B 90, 155123 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    Zanardi, P.: Quantum entanglement in fermionic lattices. Phys. Rev. A 65, 042101 (2002)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    Amosov, G.G., Mancini, S.: Entanglement from operators splitting. AIP Conf. Proc. 1101, 100 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Benatti, F., Floreanini, R., Titimbo, K.: Entanglement of identical particles. Open Syst. Inf. Dyn. 21, 1440003 (2014)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Benatti, F., Floreanini, R., Marzolino, U.: Entanglement in fermion systems and quantum metrology. Phys. Rev. A 89, 032326 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    Marzolino, U., Buchleitner, A.: Quantum teleportation with identical particles. Phys. Rev. A 91, 032316 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    Shi, Y.: Quantum entanglement of identical particles. Phys. Rev. A 67, 024301 (2003)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Bañuls, M.-C., Cirac, J.I., Wolf, M.M.: Entanglement in fermionic systems. Phys. Rev. A 76, 022311 (2007)ADSCrossRefGoogle Scholar
  59. 59.
    Iemini, F., Maciel, T.O., Debarba, T., Vianna, R.O.: Quantifying quantum correlations in fermionic systems using witness operators. Quantum Inf. Process. 12, 733 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Gigena, N., Rossignoli, R.: Entanglement in fermion systems. Phys. Rev. A 92, 042326 (2015)ADSCrossRefGoogle Scholar
  61. 61.
    Boguslawski, K., Tecmer, P., Barcza, G., Legeza, O., Reiher, M.: Orbital entanglement in bond-formation processes. J. Chem. Theory Comput. 9, 2959 (2013)CrossRefGoogle Scholar
  62. 62.
    Rissler, J., Noack, R.M., White, S.R.: Measuring orbital interaction using quantum information theory. Chem. Phys. 323, 519 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    Holevo, A.S.: Quantum Systems, Channels, Information, Section 3.1.3. Walter de Gruyter, Berlin (2012)CrossRefGoogle Scholar
  64. 64.
    Lopes, A.A.: Pure Univariate Quantum Marginals and Electronic Transport Properties of Geometrically Frustrated Systems. Ph.D. Thesis, Albert Ludwig University of Freiburg (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.V. A. Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyMoscow RegionRussia
  4. 4.P. N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations