Quantum Information Processing

, Volume 15, Issue 11, pp 4477–4487 | Cite as

Simulating Weyl points and nodal loops in an optical superlattice

Article

Abstract

We propose a scheme to simulate Weyl points and nodal loops with ultracold atoms in an optical lattice that is subjected to realizable synthetic magnetic field and synthetic dimension. We show that a Hofstadter-like Hamiltonian with a cyclically parameterized on-site energy term can be realized in a tunable two-dimensional optical superlattice, based on the laser-assisted atomic tunneling method. This model effectively describes a three-dimensional periodic lattice system under magnetic fluxes, where a synthetic dimension is encoded by a cyclical phase of the optical lattice potential. For different atomic hopping configurations, the single-particle bands are demonstrated to, respectively, exhibit Weyl points and nodal loops in the extended three-dimensional Brillouin zone. Furthermore, we illustrate that the mimicked Weyl points and nodal loops can be experimentally detected by measuring the atomic transfer fraction in Bloch–Zener oscillations.

Keywords

Optical Lattice Ultracold Atom Bloch Oscillation Transfer Fraction Nodal Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I thank Z.-Y. Xue, F. Mei, and S.-L. Zhu for helpful discussions. This work was supported by the NSFC (Grant No. 11604103), the NKRDP of China (Grant No. 2016YFA0301803), the NSF of Guangdong Province (Grant No. 2016A030313436), the FDYT (Grant No. 2015KQNCX023), and the Startup Foundation of SCNU.

References

  1. 1.
    Lin, Y.-J., Compton, R.L., Jiménez-García, K., Porto, J.V., Spielman, I.B.: Synthetic magnetic fields for ultracold neutral atoms. Nature (London) 462, 628 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Lin, Y.-J., Jiménez-García, K., Spielman, I.B.: A spin–orbit coupled Bose–Einstein condensate. Nature (London) 471, 83 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Wang, P., Yu, Z.-Q., Fu, Z., Miao, J., Huang, L., Chai, S., Zhai, H., Zhang, J.: Spin–orbit coupled degenerate Fermi gases. Phys. Rev. Lett. 109, 095301 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Cheuk, L.W., Sommer, A.T., Hadzibabic, Z., Yefsah, T., Bakr, W.S., Zwierlein, M.W.: Spin-injection spectroscopy of a spin–orbit coupled Fermi gas. Phys. Rev. Lett. 109, 095302 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Dalibard, J., Gerbier, F., Juzeliūnas, G., Öhberg, P.: Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Lewenstein, M., Sanpera, A., Ahufinger, V., Damski, B., De, A.S., Sen, U.: Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56, 243 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Zhang, D.-W., Wang, Z.D., Zhu, S.-L.: Relativistic quantum effects of Dirac particles simulated by ultracold atoms. Front. Phys. 7, 31 (2012)CrossRefGoogle Scholar
  8. 8.
    Goldman, N., Juzeliūnas, G., Öhberg, P., Spielman, I.B.: Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Zhai, H.: Degenerate quantum gases with spin–orbit coupling: a review. Rep. Prog. Phys. 78, 026001 (2015)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Qi, X.-L., Zhang, S.C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Wan, X., Turner, A.M., Vishwannath, A., Savrasov, S.Y.: Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Burkov, A.A., Hook, M.D., Balents, L.: Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Volovik, G.E.: The Universe in a Helium Droplet. Clarendon, Oxford (2003)MATHGoogle Scholar
  15. 15.
    Delplace, P., Li, J., Carpentier, D.: Topological Weyl semi-metal from a lattice model. Europhys. Lett. 97, 67004 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Xu, S.-Y., Belopolski, I., Alidoust, N., Neupane, M., Zhang, C., Sankar, R., Huang, S.-M., Lee, C.-C., Chang, G., Wang, B., Bian, G., Zheng, H., Sanchez, D.S., Chou, F., Lin, H., Jia, S., Hasan, M.Z.: Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Lv, B.Q., Weng, H.M., Fu, B.B., Wang, X.P., Miao, H., Ma, J., Richard, P., Huang, X.C., Zhao, L.X., Chen, G.F., Fang, Z., Dai, X., Qian, T., Ding, H.: Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015)Google Scholar
  18. 18.
    Inoue, H., Gyenis, A., Wang, Z., Li, J., Oh, S.W., Jiang, S., Ni, N., Bernevig, B.A., Yazdani, A.: Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal. Science 351, 1184 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G., Esslinger, T.: Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature (London) 483, 302 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Hofstadter, D.R.: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239 (1976)ADSCrossRefGoogle Scholar
  21. 21.
    Haldane, F.D.M.: Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015 (1988)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Miyake, H., Siviloglou, G.A., Kennedy, C.J., Burton, W.C., Ketterle, W.: Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Aidelsburger, M., Atala, M., Lohse, M., Barreiro, J.T., Paredes, B., Bloch, I.: Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Aidelsburger, M., Lohse, M., Schweizer, C., Atala, M., Barreiro, J.T., Nascimbène, S., Cooper, N.R., Bloch, I., Goldman, N.: Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162 (2015)CrossRefGoogle Scholar
  25. 25.
    Jotzu, G., Messer, M., Desbuquois, R., Lebrat, M., Uehlinger, T., Greif, D., Esslinger, T.: Experimental realisation of the topological Haldane model with ultracold fermions. Nature (London) 515, 237 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Atala, M., Aidelsburger, M., Barreiro, J.T., Abanin, D., Kitagawa, T., Demler, E., Bloch, I.: Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys. 9, 795 (2013)CrossRefGoogle Scholar
  27. 27.
    Lang, L.-J., Cai, X., Chen, S.: Edge states and topological phases in one-dimensional optical superlattices. Phys. Rev. Lett. 108, 220401 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Mei, F., Zhu, S.-L., Zhang, Z.-M., Oh, C.H., Goldman, N.: Simulating \(\mathbb{Z}_2\) topological insulators with cold atoms in a one-dimensional optical lattice. Phys. Rev. A 85, 013638 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Mei, F., Zhang, D.-W., Zhu, S.-L.: Some topological states in one-dimensional cold atomic systems. Ann. Phys. 358, 58 (2015)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Boada, O., Celi, A., Latorre, J.I., Lewenstein, M.: Quantum simulation of an extra dimension. Phys. Rev. Lett. 108, 133001 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Celi, A., Massignan, P., Ruseckas, J., Goldman, N., Spielman, I.B., Juzeliūnas, G., Lewenstein, M.: Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Price, H.M., Zilberberg, O., Ozawa, T., Carusotto, I., Goldman, N.: Four-dimensional quantum Hall effect with ultracold atoms. Phys. Rev. Lett. 115, 195303 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Kraus, Y.E., Lahini, Y., Ringel, Z., Verbin, M., Zilberber, O.: Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Mei, F., You, J.-B., Nie, W., Fazio, R., Zhu, S.-L., Kwek, L.C.: Simulation and detection of photonic Chern insulators in a one-dimensional circuit-QED lattice. Phys. Rev. A 92, 041805(R) (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Luo, X.-W., Zhou, X., Li, C.-F., Xu, J.-S., Guo, G.-C., Zhou, Z.-W.: Quantum simulation of 2D topological physics in a 1D array of optical cavities. Nat. Commun. 6, 7704 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Yuan, L., Shi, Y., Fan, S.: Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett. 41, 741 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O., Carusotto, I.: Synthetic dimensions in integrated photonics: from optical isolation to 4D quantum Hall physics. arXiv: 1510.03910
  38. 38.
    Mancini, M., Pagano, G., Cappellini, G., Livi, L., Rider, M., Catani, J., Sias, C., Zoller, P., Inguscio, M., Dalmonte, M., Fallani, L.: Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510 (2015)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Stuhl, B.K., Lu, H.-I., Aycock, L.M., Genkina, D., Spielman, I.B.: Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514 (2015)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Lu, L., Wang, Z., Ye, D., Ran, L., Fu, L., Joannopoulos, J.D., Soljǎcíc, M.: Experimental observation of Weyl points. Science 349, 622 (2015)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Xiao, M., Chen, W.-J., He, W.-Y., Chan, C.T.: Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 11, 920 (2015)CrossRefGoogle Scholar
  42. 42.
    Bian, G., Chang, T.-R., Sankar, R., Xu, S.-Y., Zheng, H., Neupert, T., Chiu, C.-K., Huang, S.-M., Chang, G., Belopolski, I., Sanchez, D.S., Neupane, M., Alidoust, N., Liu, C., Wang, B., Lee, C.-C., Jeng, H.-T., Zhang, C., Yuan, Z., Jia, S., Bansil, A., Chou, F., Lin, H., Hasan, M.Z.: Topological nodal-line fermions in spin–orbit metal PbTaSe2. Nat. Commun. 7, 10556 (2016). doi: 10.1038/ncomms10556 ADSCrossRefGoogle Scholar
  43. 43.
    Jiang, J.H.: Tunable topological Weyl semimetal from simple-cubic lattices with staggered fluxes. Phys. Rev. A 85, 033640 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    Ganeshan, S., Sarma, S.: Das: constructing a Weyl semimetal by stacking one-dimensional topological phases. Phys. Rev. B 91, 125438 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    Dubcek, T., Kennedy, C.J., Lu, L., Ketterle, W., Soljacic, M., Buljan, H.: Weyl Points in three-dimensional optical lattices: synthetic magnetic monopoles in momentum space. Phys. Rev. Lett. 114, 225301 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Zhang, D.-W., Zhu, S.-L., Wang, Z.D.: Simulating and exploring Weyl semimetal physics with cold atoms in a two-dimensional optical lattice. Phys. Rev. A 92, 013632 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    He, W.-Y., Zhang, S., Law, K.T.: Realization and detection ofWeyl semimetals and the chiral anomaly in cold atomic systems. Phys. Rev. A 94, 013606 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    Zhang, D.-W., Zhao, Y.X., Liu, R.-B., Xue, Z.-Y., Zhu, S.-L., Wang, Z.D.: Quantum simulation of exotic PT-invariant topological nodal loop bands with ultracold atoms in an optical lattice. Phys. Rev. A 93, 043617 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    Xu, Y., Zhang, C.: Dirac and Weyl rings in three dimensional cold atom optical lattices. Phys. Rev. A 93, 063606 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    Roati, G., D’Errico, C., Fallani, L., Fattori, M., Fort, C., Zaccanti, M., Modugno, G., Modugno, M., Inguscio, M.: Anderson localization of a non-interacting Bose–Einstein condensate. Nature (London) 453, 895 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    Uehlinger, T., Greif, D., Jotzu, G., Tarruell, L., Esslinger, T., Wang, L., Troyer, M.: Double transfer through Dirac points in a tunable honeycomb optical lattice. Eur. Phys. J. Spec. Top. 217, 121 (2013)CrossRefGoogle Scholar
  52. 52.
    Lim, L.-K., Fuchs, J.-N., Montambaux, G.: Bloch–Zener oscillations across a merging transition of Dirac points. Phys. Rev. Lett. 108, 175303 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, SPTESouth China Normal UniversityGuangzhouChina

Personalised recommendations