Quantum Information Processing

, Volume 15, Issue 11, pp 4729–4746 | Cite as

Two different types of optical hybrid qubits for teleportation in a lossy environment

Article

Abstract

We investigate the performance of quantum teleportation under a lossy environment using two different types of optical hybrid qubits. One is the hybrid of a polarized single-photon qubit and a coherent-state qubit (type-I logical qubit), and the other is the hybrid of a qubit of the vacuum and the single-photon and a coherent-state qubit (type-II logical qubit). We show that type-II hybrid qubits are generally more robust to photon loss effects compared to type-I hybrid qubits with respect to fidelities and success probabilities of quantum teleportation.

Keywords

Quantum teleportation Quantum information processing Quantum optics Optical qubit Hybrid qubit Decoherence 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2010-0018295) and by the KIST Institutional Program (Progect No. 2E26680-16-P025).

References

  1. 1.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575–579 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photonics 9, 641–652 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature (London) 402, 390–393 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46–52 (2001)ADSCrossRefMATHGoogle Scholar
  6. 6.
    Dawson, C.M., Haselgrove, H.L., Nielsen, M.A.: Noise thresholds for optical cluster-state quantum computation. Phys. Rev. A 73, 052306 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Hayes, A.J.F., Haselgrove, H.L., Gilchrist, A., Ralph, T.C.: Fault tolerance in parity-state linear optical quantum computing. Phys. Rev. A 82, 022323 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Lund, A.P., Ralph, T.C., Haselgrove, H.L.: Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Ralph, T.C., Pryde, G.J.: Optical quantum computation. Prog. Opt. 54, 209–269 (2010)CrossRefGoogle Scholar
  10. 10.
    Lee, H.-W., Kim, J.: Quantum teleportation and Bell’s inequality using single-particle entanglement. Phys. Rev. A 63, 012305 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Lund, A.P., Ralph, T.C.: Nondeterministic gates for photonic single-rail quantum logic. Phys. Rev. A 66, 032307 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Lütkenhaus, N., Calsamiglia, J., Suominen, K.-A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295–3300 (1999)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Calsamiglia, J., Lütkenhaus, N.: Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B 72, 67–71 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Grice, W.P.: Arbitrarily complete Bell-state measurement using only linear optical elements. Phys. Rev. A 84, 042331 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Zaidi, H.A., van Loock, P.: Beating the one-half limit of ancilla-free linear optics Bell measurements. Phys. Rev. Lett. 110, 260501 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Ewert, F., van Loock, P.: 3/4-efficient Bell measurement with passive linear optics and unentangled ancillae. Phys. Rev. Lett. 113, 140403 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Lee, S.-W., Park, K., Ralph, T.C., Jeong, H.: Nearly deterministic Bell measurement for multiphoton qubits and its application to quantum information processing. Phys. Rev. Lett. 114, 113603 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Lee, S.-W., Park, K., Ralph, T.C., Jeong, H.: Nearly deterministic Bell measurement with multiphoton entanglement for efficient quantum-information processing. Phys. Rev. A 92, 052324 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64, 022313 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Jeong, H., Kim, M.S., Lee, J.: Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    Jeong, H., Kim, M.S.: Efficient quantum computation using coherent states. Phys. Rev. A 65, 042305 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Jeong, H., Kim, M.S.: Purification of entangled coherent states. Quantum Inf. Comput. 2, 208–221 (2002)MathSciNetMATHGoogle Scholar
  23. 23.
    Ralph, T.C., Gilchrist, A., Milburn, G.J., Munro, W.J., Glancy, S.: Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Lee, S.-W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Park, K., Lee, S.-W., Jeong, H.: Quantum teleportation between particlelike and fieldlike qubits using hybrid entanglement under decoherence effects. Phys. Rev. A 86, 062301 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Kwon, H., Jeong, H.: Violation of the Bell–Clauser–Horne–Shimony–Holt inequality using imperfect photodetectors with optical hybrid states. Phys. Rev. A 88, 052127 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Gerry, C.C.: Generation of optical macroscopic quantum superposition states via state reduction with a Mach–Zehnder interferometer containing a Kerr medium. Phys. Rev. A 59, 4095–4098 (1999)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Jeong, H.: Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation. Phys. Rev. A 72, 034305 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Shapiro, J.H., Razavi, M.: Continuous-time cross-phase modulation and quantum computation. New J. Phys. 9, 16 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Kwon, H., Jeong, H.: Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state. Phys. Rev. A 91, 012340 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R., Grangier, P.: Generation of optical ‘Schrödinger cats’ from photon number states. Nature (London) 448, 784–786 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Jeong, H., Zavatta, A., Kang, M., Lee, S.-W., Costanzo, L.S., Grandi, S., Ralph, T.C., Bellini, M.: Generation of hybrid entanglement of light. Nat. Photonics 8, 564–569 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Morin, O., Huang, K., Liu, J., Jeannic, H.L., Fabre, C., Laurat, J.: Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photonics 8, 570–574 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Kim, H., Park, J., Jeong, H.: Transfer of different types of optical qubits over a lossy environment. Phys. Rev. A 89, 042303 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Walls, D.F., Milburn, G.J.: Effect of dissipation on quantum coherence. Phys. Rev. A 31, 2403–2408 (1985)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Oh, S., Lee, S., Lee, H.-W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Man, Z.-X., Xia, Y.-J.: Quantum teleportation in a dissipative environment. Quantum Inf. Process. 11, 1911–1920 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    De Martini, F.: Amplification of quantum entanglement. Phys. Rev. Lett. 81, 2842–2845 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    De Martini, F., Sciarrino, F., Vitelli, C.: Entanglement test on a microscopic–macroscopic system. Phys. Rev. Lett. 100, 253601 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    Sekatski, P., Sanguinetti, B., Pomarico, E., Gisin, N., Simon, C.: Cloning entangled photons to scales one can see. Phys. Rev. A 82, 053814 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Sekatski, P., Sangouard, N., Stobińska, M., Bussières, F., Afzelius, M., Gisin, N.: Proposal for exploring macroscopic entanglement with a single photon and coherent states. Phys. Rev. A 86, 060301(R) (2012)ADSCrossRefGoogle Scholar
  43. 43.
    Ghobadi, R., Lvovsky, A., Simon, C.: Creating and detecting micro–macro photon-number entanglement by amplifying and deamplifying a single-photon entangled state. Phys. Rev. Lett. 110, 170406 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    Bruno, N., Martin, A., Sekatski, P., Sangouard, N., Thew, R.T., Gisin, N.: Displacement of entanglement back and forth between the micro and macro domains. Nat. Phys. 9, 545–548 (2013)CrossRefGoogle Scholar
  45. 45.
    Lvovsky, A.I., Ghobadi, R., Chandra, A., Prasad, A.S., Simon, C.: Observation of micromacro entanglement of light. Nat. Phys. 9, 541–544 (2013)CrossRefGoogle Scholar
  46. 46.
    Andersen, U.L., Neergaard-Nielsen, J.S.: Heralded generation of a micro–macro entangled state. Phys. Rev. A 88, 022337 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    Sheng, Y.-B., Zhou, L., Long, G.-L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    Takeda, S., Mizuta, T., Fuwa, M., van Loock, P., Furusawa, A.: Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature (London) 500, 315–318 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    Andersen, U.L., Neergaard-Nielsen, J.S., van Loock, P., Furusawa, A.: Hybrid discrete- and continuous-variable quantum information. Nat. Phys. 11, 713–719 (2015)CrossRefGoogle Scholar
  50. 50.
    Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973)MATHGoogle Scholar
  51. 51.
    Phoenix, S.J.D.: Wave-packet evolution in the damped oscillator. Phys. Rev. A 41, 5132–5138 (1990)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics and Astronomy, Center for Macroscopic Quantum ControlSeoul National UniversitySeoulKorea
  2. 2.Quantum Universe CenterKorea Institute for Advanced StudySeoulKorea

Personalised recommendations