Quantum Information Processing

, Volume 15, Issue 10, pp 3995–4011 | Cite as

Conceptual aspects of geometric quantum computation

  • Erik Sjöqvist
  • Vahid Azimi Mousolou
  • Carlo M. Canali


Geometric quantum computation is the idea that geometric phases can be used to implement quantum gates, i.e., the basic elements of the Boolean network that forms a quantum computer. Although originally thought to be limited to adiabatic evolution, controlled by slowly changing parameters, this form of quantum computation can as well be realized at high speed by using nonadiabatic schemes. Recent advances in quantum gate technology have allowed for experimental demonstrations of different types of geometric gates in adiabatic and nonadiabatic evolution. Here, we address some conceptual issues that arise in the realizations of geometric gates. We examine the appearance of dynamical phases in quantum evolution and point out that not all dynamical phases need to be compensated for in geometric quantum computation. We delineate the relation between Abelian and non-Abelian geometric gates and find an explicit physical example where the two types of gates coincide. We identify differences and similarities between adiabatic and nonadiabatic realizations of quantum computation based on non-Abelian geometric phases.


Geometric phase Quantum computation Quantum gates 



E.S. acknowledges financial support from the Swedish Research Council (VR) through Grant No. D0413201. V.A.M. acknowledges support from the Department of Mathematics at University of Isfahan (Iran). C.M.C. is supported by the Department of Physics and Electrical Engineering at Linnaeus University (Sweden) and by the Swedish Research Council (VR) through Grant No. 621-2014-4785.


  1. 1.
    Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Pachos, J., Zanardi, P.: Quantum holonomies for quantum computing. Int. J. Mod. Phys. B 15, 1257–1286 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Lloyd, S.: Computation from geometry. Science 292, 1669 (2001)CrossRefGoogle Scholar
  4. 4.
    Ekert, A., Ericsson, M., Hayden, P., Inamori, H., Jones, J.A., Oi, D.K.L., Vedral, V.: Geometric quantum computation. J. Mod. Opt. 47, 2501–2513 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Duan, L.-M., Cirac, J.I., Zoller, P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695–1697 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Faoro, L., Siewert, J., Fazio, R.: Non-Abelian holonomies, charge pumping, and quantum computation with Josephson junctions. Phys. Rev. Lett. 90, 028301 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Solinas, P., Zanardi, P., Zanghì, N., Rossi, F.: Semiconductor-based geometrical quantum gates. Phys. Rev. B 67, 121307 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Xiang-Bin, W., Keiji, M.: Nonadiabatic conditional geometric phase shift with NMR. Phys. Rev. Lett. 87, 097901 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Zhu, S.-L., Wang, Z.D.: Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 89, 097902 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Zhu, S.-L., Wang, Z.D.: Universal quantum gates based on a pair of orthogonal cyclic states: application to NMR systems. Phys. Rev. A 67, 022319 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Zhu, S.-L., Wang, Z.D.: Unconventional geometric quantum computation. Phys. Rev. Lett. 91, 187902 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Sjöqvist, E., Tong, D.M., Andersson, L.M., Hessmo, B., Johansson, M., Singh, K.: Non-adiabatic holonomic quantum computation. New J. Phys. 14, 103035 (2012)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Jones, J.A., Vedral, V., Ekert, A., Castagnoli, G.: Geometric quantum computation using nuclear magnetic resonance. Nature 403, 869–871 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Du, J., Zou, P., Wang, Z.D.: Experimental implementation of high-fidelity unconventional geometric quantum gates using an NMR interferometer. Phys. Rev. A 74, 020302(R) (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Feng, G., Xu, G., Long, G.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M., Britton, J., Itano, W.M., Jelenković, B., Langer, C., Rosenband, T., Wineland, D.J.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Toyoda, K., Uchida, K., Noguchi, A., Haze, S., Urabe, S.: Realization of holonomic single-qubit operations. Phys. Rev. A 87, 052307 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Abdumalikov, A.A., Fink, J.M., Juliusson, K., Pechal, M., Berger, S., Wallraff, A., Filipp, S.: Experimental realization of non-Abelian non-adiabatic geometric gates. Nature 496, 482–485 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Tian, M., Zafarullah, I., Chang, T., Mohan, R.K., Babbitt, W.R.: Demonstration of geometric operations on the Bloch vectors in an ensemble of rare-earth metal atoms. Phys. Rev. A 79, 022312 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Arroyo-Camejo, S., Lazariev, A., Hell, S.W., Balasubramanian, G.: Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin. Nat. Commun. 5, 4870 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Zu, C., Wang, W.-B., He, L., Zhang, W.-G., Dai, C.-Y., Wang, F., Duan, L.-M.: Experimental realization of universal geometric quantum gates with solid-state spins. Nature 512, 72–75 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Anandan, J.: Non-adiabatic non-Abelian geometric phase. Phys. Lett. A 133, 171–175 (1988)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Solinas, P., Zanardi, P., Zhanghì, N., Rossi, F.: Nonadiabatic geometrical quantum gates in semiconductor quantum dots. Phys. Rev. A 67, 052309 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    Tian, M., Barber, Z.W., Fischer, J.A., Babbitt, W.R.: Geometric manipulation of the quantum states of two-level atoms. Phys. Rev. A 69, 050301(R) (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Ota, Y., Kondo, Y.: Composite pulses in NMR as nonadiabatic geometric quantum gates. Phys. Rev. A 80, 024302 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Zhu, S.-L., Zanardi, P.: Geometric quantum gates that are robust against stochastic control errors. Phys. Rev. A 72, 020301(R) (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Azimi Mousolou, V., Canali, C.M., Sjöqvist, E.: Universal non-adiabatic holonomic gates in quantum dots and single-molecule magnets. New J. Phys. 16, 013029 (2014)Google Scholar
  29. 29.
    Pancharatnam, S.: Generalized theory of interference, and its applications. Part I. coherent pencils. Proc. Indian Acad. Sci. A 44, 247–262 (1956)MathSciNetGoogle Scholar
  30. 30.
    Blais, A., Tremblay, A.-M.S.: Effect of noise on geometric logic gates for quantum computation. Phys. Rev. A 67, 012308 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Unanyan, R.G., Fleischhauer, M.: Geometric phase gate without dynamical phases. Phys. Rev. A 69, 050302(R) (2004)ADSCrossRefGoogle Scholar
  32. 32.
    Berry, M.V.: Transitionless quantum driving. J. Phys. A: Math. Theor. 42, 365303 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zhang, J., Kyaw, T.H., Tong, D.M., Sjöqvist, E., Kwek, L.-C.: Fast non-Abelian geometric gates via transitionless quantum driving. Sci. Rep. 5, 18414 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Song, X.-K., Zhang, H., Ai, Q., Qiu, J., Deng, F.-G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspaces with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Messiah, A.: Quantum mechanics. Vol II, p. 744, North-Holland, Amsterdam (1962)Google Scholar
  36. 36.
    Wilczek, F., Zee, A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Simon, B.: Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 51, 2167–2170 (1983)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Florio, G., Facchi, P., Fazio, R., Giovannetti, V., Pascazio, S.: Robust gates for holonomic quantum computation. Phys. Rev. A 73, 022327 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    Fujii, K.: Note on coherent states and adiabatic connections, curvatures. J. Math. Phys. 41, 4406–4412 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Xu, G.F., Liu, C.L., Zhao, P.Z., Tong, D.M.: Nonadiabatic holonomic gates realized by a single-shot implementation. Phys. Rev. A 92, 052302 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Sjöqvist, E.: Nonadiabatic holonomic single-qubit gates in off-resonant \(\Lambda \) systems. Phys. Lett. A 380, 65–67 (2016)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Spiegelberg, J., Sjöqvist, E.: Validity of the rotating-wave approximation in nonadiabatic holonomic quantum computation. Phys. Rev. A 88, 054301 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    Ruseckas, J., Juzeliũnas, G., Öhberg, P., Fleischhauer, M.: Non-Abelian gauge potentials for ultracold atoms with degenerate dark states. Phys. Rev. Lett. 95, 010404 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  2. 2.Department of Mathematics, Faculty of ScienceUniversity of IsfahanIsfahanIran
  3. 3.Department of Physics and Electrical EngineeringLinnaeus UniversityKalmarSweden

Personalised recommendations