Advertisement

Quantum Information Processing

, Volume 15, Issue 10, pp 4117–4135 | Cite as

Physical synthesis of quantum circuits using templates

  • Zahra Mirkhani
  • Naser Mohammadzadeh
Article
  • 126 Downloads

Abstract

Similar to traditional CMOS circuits, quantum circuit design flow is divided into two main processes: logic synthesis and physical design. Addressing the limitations imposed on optimization of the quantum circuit metrics because of no information sharing between logic synthesis and physical design processes, the concept of “physical synthesis” was introduced for quantum circuit flow, and a few techniques were proposed for it. Following that concept, in this paper a new approach for physical synthesis inspired by template matching idea in quantum logic synthesis is proposed to improve the latency of quantum circuits. Experiments show that by using template matching as a physical synthesis approach, the latency of quantum circuits can be improved by more than 23.55 % on average.

Keywords

Quantum computing Physical design Physical synthesis Template matching 

Notes

Acknowledgments

We would like to thank Prof. Wineland and Prof. Kubiatowicz for their invaluable deliberations.

References

  1. 1.
    Markov, I.L.: Limits on fundamental limits to computation. Nature 512, 147–154 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge university press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Marinescu, D.C., Marinescu, G.M.: Approaching Quantum Computing. Prentice Hall, New Jersey (2005)zbMATHGoogle Scholar
  4. 4.
    O’Brien, J.L.: Quantum computing. Front. Opt. 1, FTu2A (2015)Google Scholar
  5. 5.
    Spiller, T.P., Munro, W.J., Barrett, S.D., Kok, P.: An introduction to quantum information processing: applications and realizations. Contemp. Phys. 46, 407–436 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Iwama, K., Kambayashi, Y., Yamashita, S.: Transformation rules for designing CNOT-based quantum circuits. In: Proceedings of the 39th Annual Design Automation Conference, pp. 419–424 (2002)Google Scholar
  7. 7.
    Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Design Automation Conference, 2003. Proceedings, pp. 318–323 (2003)Google Scholar
  8. 8.
    Mohammadzadeh, N., Sedighi, M., Zamani, M.S.: Quantum physical synthesis: improving physical design by netlist modifications. Microelectron. J. 41, 219–230 (2010)CrossRefGoogle Scholar
  9. 9.
    Häffner, H., Roos, C.F.: Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Leibrandt, D.R., Labaziewicz, J., Clark, R.J., Chuang, I.L., Epstein, R.J., Ospelkaus, C., et al.: Demonstration of a scalable, multiplexed ion trap for quantum information processing. Quantum Inf. Comput. 9, 901–919 (2009)Google Scholar
  11. 11.
    Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45–53 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    Wineland, D.J., Monroe, C., Itano, W., Leibfried, D., King, B., Meekhof, D.: Experimental issues in coherent quantum-state manipulation of trapped atomic ions. arxiv:quant-ph/9710025 (1997)
  15. 15.
    Kim, J., Pau, S., Ma, Z., McLellan, H., Gates, J., Kornblit, A., et al.: System design for large-scale ion trap quantum information processor. Quantum Inf. Comput. 5, 515–537 (2005)zbMATHGoogle Scholar
  16. 16.
    Hensinger, W., Olmschenk, S., Stick, D., Hucul, D., Yeo, M., Acton, M., et al.: T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation. Appl. Phys. Lett. 88, 034101 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Whitney, M.G., Isailovic, N., Patel, Y., Kubiatowicz, J.: A fault tolerant, area efficient architecture for Shor’s factoring algorithm. ACM SIGARCH Comput. Archit. News 37, 383–394 (2009)CrossRefGoogle Scholar
  18. 18.
    Metodi, T.S., Thaker, D.D., Cross, A.W., Chong, F.T., Chuang, I.L.: A quantum logic array microarchitecture: scalable quantum data movement and computation. In: Proceedings of 38th Annual IEEE/ACM International Symposium on Microarchitecture, 2005, MICRO-38, p. 12 (2005)Google Scholar
  19. 19.
    Isailovic, N., Whitney, M., Patel, Y., Kubiatowicz, J.: Running a quantum circuit at the speed of data. ACM SIGARCH Comput. Archit. News 36, 177–188 (2008)CrossRefGoogle Scholar
  20. 20.
    Shende, V.V., Prasad, A.K., Patel, K.N., Markov, I.L., Hayes, J.P.: Scalable simplification of reversible circuits. In: Proceedings of the 12th International Workshop on Logic and Synthesis (IWLS’03), (2003)Google Scholar
  21. 21.
    Maslov, D., Dueck, G.W., Miller, D.M.: Toffoli network synthesis with templates. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24, 807–817 (2005)CrossRefGoogle Scholar
  22. 22.
    Maslov, D., Dueck, G.W., Miller, D.M.: Synthesis of Fredkin-Toffoli reversible networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13, 765–769 (2005)CrossRefGoogle Scholar
  23. 23.
    Maslov, D., Dueck, G.W., Miller, D.M.: Fredkin/Toffoli templates for reversible logic synthesis. In: Proceedings of the 2003 IEEE/ACM international conference on Computer-aided design, p. 256 (2003)Google Scholar
  24. 24.
    Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible Toffoli networks. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 12, 42 (2007)CrossRefGoogle Scholar
  25. 25.
    Maslov, D., Dueck, G., Miller, D.M.: Simplification of Toffoli networks via templates. Proceedings of 16th Symposium on In: Integrated Circuits and Systems Design, 2003, SBCCI 2003, pp. 53–58 (2003)Google Scholar
  26. 26.
    Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Inf. Process. 10, 355–377 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Arabzadeh, M., Saeedi, M., Zamani, M.S.: Rule-based optimization of reversible circuits. In: Design Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific, pp. 849–854 (2010)Google Scholar
  28. 28.
    Soeken, M., Wille, R., Dueck, G.W., Drechsler, R.: Window optimization of reversible and quantum circuits. In: 2010 IEEE 13th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS), pp. 341–345 (2010)Google Scholar
  29. 29.
    Abdessaied, N., Soeken, M., Wille, R., Drechsler, R.: Exact template matching using Boolean satisfiability. In: 2013 IEEE 43rd International Symposium on Multiple-Valued Logic (ISMVL), pp. 328–333 (2013)Google Scholar
  30. 30.
    Rahman, M. M., Dueck, G. W.: Properties of quantum templates. In: Glück, R., Yokoyama, T. (eds.) Reversible Computation, pp. 125–137. Springer, Heidelberg (2013)Google Scholar
  31. 31.
    Balensiefer, S., Kreger-Stickles, L., Oskin, M.: QUALE: quantum architecture layout evaluator. In: Proceedings of SPIE, the International Society for Optical Engineering, pp. 103–114 (2005)Google Scholar
  32. 32.
    Balensiefer, S., Kregor-Stickles, L., Oskin, M.: An evaluation framework and instruction set architecture for ion-trap based quantum micro-architectures. ACM SIGARCH Comput. Archit. News 33, 186–196 (2005)CrossRefGoogle Scholar
  33. 33.
    Whitney, M., Isailovic, N., Patel, Y., Kubiatowicz, J.: Automated generation of layout and control for quantum circuits. In: Proceedings of the 4th International Conference on Computing Frontiers, pp. 83–94 (2007)Google Scholar
  34. 34.
    Metodi, T.S., Thaker, D.D., Cross, A.W., Chong, F.T., Chuang, I.L.: Scheduling physical operations in a quantum information processor. In: Defense and Security Symposium, pp. 62440T–62440T-12 (2006)Google Scholar
  35. 35.
    Dousti, M.J. Pedram, M.: Minimizing the latency of quantum circuits during mapping to the ion-trap circuit fabric. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 840–843 (2012)Google Scholar
  36. 36.
    Goudarzi, H., Dousti, M.J., Shafaei, A., Pedram, M.: Design of a universal logic block for fault-tolerant realization of any logic operation in trapped-ion quantum circuits. Quantum Inf. Process. 13, 1267–1299 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Yazdani, M., Zamani, M.S., Sedighi, M.: A quantum physical design flow using ILP and graph drawing. Quantum Inf. Process. 12, 3239–3264 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Toolkit, G.D.: An object-oriented library for handling and drawing graphs. http://www.dia.uniroma3.it/~gdt/gdt4/index.php
  39. 39.
    Mohammadzadeh, N., Bahreini, T., Badri, H.: Optimal ILP-based approach for gate location assignment and scheduling in quantum circuits. Model. Simul. Eng. 2014, 7 (2014)Google Scholar
  40. 40.
    Bahreini, T., Mohammadzadeh, N.: An MINLP model for scheduling and placement of quantum circuits with a heuristic solution approach. ACM J. Emerg. Technol. Comput. Syst. (JETC) 12, 29 (2015)Google Scholar
  41. 41.
    Mohammadzadeh, N., Sedighi, M., Zamani, M.S.: Gate location changing: an optimization technique for quantum circuits. Int. J. Quantum Inf. 10, 1250037 (2012)CrossRefGoogle Scholar
  42. 42.
    Ahsan, M., Van Meter, R., Kim, J.: Designing a million-qubit quantum computer using resource performance simulator. ACM J. Emerg. Technol. Comput. Syst. (JETC) 12, 39 (2016)Google Scholar
  43. 43.
    Ahsan, M., Kim, J.: Optimization of quantum computer architecture using a resource-performance simulator. In: Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, pp. 1108–1113 (2015)Google Scholar
  44. 44.
    Monroe, C., Raussendorf, R., Ruthven, A., Brown, K., Maunz, P., Duan, L.-M., et al.: Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    Juvan, M., Mohar, B.: Optimal linear labelings and eigenvalues of graphs. Discrete Appl. Math. 36, 153–168 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Mohammadzadeh, N., Zamani, M.S., Sedighi, M.: Auxiliary qubit selection: a physical synthesis technique for quantum circuits. Quantum Inf. Process. 10, 139–154 (2011)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Mohammadzadeh, N., Zamani, M.S., Sedighi, M.: Quantum circuit physical design methodology with emphasis on physical synthesis. Quantum Inf. Process. 13, 445–465 (2014)CrossRefzbMATHGoogle Scholar
  48. 48.
    Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27, 436–444 (2008)CrossRefGoogle Scholar
  49. 49.
    Mohammadzadeh, N., Taqavi, E.: Quantum circuit physical design flow for the multiplexed trap architecture. Microprocess. Microsyst. (2016). http://www.sciencedirect.com/science/article/pii/S0141933116300047
  50. 50.
    Kahng, A.B., Lienig, J., Markov, I.L., Hu, J.: VLSI Physical Design: From Graph Partitioning to Timing Closure. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  51. 51.
    Maslov, D., Dueck, G., Scott, N.: Reversible logic synthesis benchmarks page. http://www.cs.uvic.ca/~dmaslov (2005)
  52. 52.
    Lin, C.-C., Chakrabarti, A., Jha, N.K.: FTQLS: Fault-tolerant quantum logic synthesis. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22, 1350–1363 (2014)CrossRefGoogle Scholar
  53. 53.
    Brooks, S.P., Morgan, B.J.: Optimization using simulated annealing. Statistician, 44, 241–257 (1995)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computer EngineeringShahed UniversityTehranIran

Personalised recommendations