Quantum Information Processing

, Volume 15, Issue 9, pp 3881–3891 | Cite as

Protecting entanglement from correlated amplitude damping channel using weak measurement and quantum measurement reversal

  • Xing Xiao
  • Yao Yao
  • Ying-Mao XieEmail author
  • Xing-Hua Wang
  • Yan-Ling Li


Based on the quantum technique of weak measurement, we propose a scheme to protect the entanglement from correlated amplitude damping decoherence. In contrast to the results of memoryless amplitude damping channel, we show that the memory effects play a significant role in the suppression of entanglement sudden death and protection of entanglement under severe decoherence. Moreover, we find that the initial entanglement could be drastically amplified by the combination of weak measurement and quantum measurement reversal even under the correlated amplitude damping channel. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.


Entanglement Weak measurement Correlated amplitude damping channel 



This work is supported by the Funds of the National Natural Science Foundation of China under Grant Nos. 11247006 and 11365011.


  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambrige University Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  3. 3.
    DiVincenzo, D.P.: Quantum computation. Science 270, 255–261 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1, 165–171 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Bennett, C.G., Shor, P.W.: Quantum information theory. IEEE Trans. Inf. Theory 44, 2724–2742 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Holevo, A.S., Giovannetti, V.: Quantum channels and their entropic characteristics. Rep. Prog. Phys. 75, 046001 (2012)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Macchiavello, C., Palma, G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301(R) (2002)ADSCrossRefGoogle Scholar
  12. 12.
    D’Arrigo, A., Benenti, G., Falci, G.: Quantum capacity of dephasing channels with memory. N. J. Phys. 9, 310 (2007)CrossRefGoogle Scholar
  13. 13.
    Plenio, M.B., Virmani, S.: Spin chains and channels with memory. Phys. Rev. Lett. 99, 120504 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    D’Arrigo, A., Benenti, G., Falci, G., Macchiavello, C.: Classical and quantum capacities of a fully correlated amplitude damping channel. Phys. Rev. A 88, 042337 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Katz, N., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Sun, Q.Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Paraoanu, G.S.: Partial measurements and the realization of quantum-mechanical counterfactuals. Found. Phys. 41, 1214–1235 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Paraoanu, G.S.: Generalized partial measurements. EPL (Europhys Lett) 93, 64002 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)CrossRefGoogle Scholar
  23. 23.
    Li, Y.L., Xiao, X.: Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal. Quantum Inf. Process. 12, 3067–3077 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Man, Z.X., Xia, Y.J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Man, Z.X., Xia, Y.J., An, N.B.: Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements. Phys. Rev. A 86, 052322 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–601 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Almeida, M.P., et al.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Yeo, Y., Skeen, A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    Arshed, N., Toor, A.H.: Entanglement-assisted capacities of time-correlated amplitude-damping channel. arXiv:1307.5403 (2013)
  33. 33.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xing Xiao
    • 1
  • Yao Yao
    • 2
  • Ying-Mao Xie
    • 1
    Email author
  • Xing-Hua Wang
    • 1
  • Yan-Ling Li
    • 3
  1. 1.College of Physics and Electronic InformationGannan Normal UniversityGanzhouChina
  2. 2.Microsystems and Terahertz Research CenterChina Academy of Engineering PhysicsChengduChina
  3. 3.School of Information EngineeringJiangxi University of Science and TechnologyGanzhouChina

Personalised recommendations