Quantum Information Processing

, Volume 15, Issue 9, pp 3489–3518 | Cite as

PEET: a Matlab tool for estimating physical gate errors in quantum information processing systems

Article
Part of the following topical collections:
  1. Quantum Computer Science

Abstract

A Physical Error Estimation Tool (PEET) is introduced in Matlab for predicting physical gate errors of quantum information processing (QIP) operations by constructing and then simulating gate sequences for a wide variety of user-defined, Hamiltonian-based physical systems. PEET is designed to accommodate the interdisciplinary needs of quantum computing design by assessing gate performance for users familiar with the underlying physics of QIP, as well as those interested in higher-level computing operations. The structure of PEET separates the bulk of the physical details of a system into Gate objects, while the construction of quantum computing gate operations are contained in GateSequence objects. Gate errors are estimated by Monte Carlo sampling of noisy gate operations. The main utility of PEET, though, is the implementation of QuantumControl methods that act to generate and then test gate sequence and pulse-shaping techniques for QIP performance. This work details the structure of PEET and gives instructive examples for its operation.

Keywords

Quantum computation Quantum simulation Quantum control Open quantum system Decoherence Matlab 

Supplementary material

11128_2016_1337_MOESM1_ESM.zip (181 kb)
Supplementary material 1 (zip 180 KB)

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge Univeristy Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC), May 1996, pp. 212–219Google Scholar
  4. 4.
    Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scalable quantum programming language. CoRR. arXiv:1304.3390
  5. 5.
    Intelligence advanced research projects activity (iarpa): Quantum Computer Science (QCS) ProgramGoogle Scholar
  6. 6.
    Devitt, S.J., Stephens, A.M., Munro, W.J., Nemoto, K.: Requirements for fault-tolerant factoring on an atom-optics quantum computer. Nat. Commun. 4, 10 (2013)CrossRefGoogle Scholar
  7. 7.
    Suchara, M., Faruque, A., Lai, C.Y., Paz, G., Chong, J., Kubiatowicz, J.: arXiv:1312.2316, 17 pp (2013)
  8. 8.
    Clark, C.R., Metodi, T.S., Gasster, S.D., Brown, K.R.: Resource requirements for fault-tolerant quantum simulation: the ground state of the transverse using model. Phys. Rev. A 79, 062314 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Jones, N.C., Van Meter, R., Austin, G.F., Peter L, M.M., Jungsang, K., Thaddeus D, L., Yoshihisa, Y.: Layered architecture for quantum computing. Phys. Rev. X 2, 031007 (2012)Google Scholar
  10. 10.
    Johansson, J.R., Nation, P.D., Nori, F.: Qutip 2: a python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184(4), 1234–1240 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Johansson, J.R., Nation, P.D., Nori, F.: Qutip: an open-source python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183(8), 1760–1772 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Quantiki.org. List of qc simulators.(2015)Google Scholar
  13. 13.
    Brif, C., Chakrabarti, R., Rabitz, H.: Control of quantum phenomena: past, present and future. N. J. Phys. 12(7), 075008 (2010)CrossRefGoogle Scholar
  14. 14.
    Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Khodjasteh, K., Viola, L.: Dynamically error-corrected gates for universal quantum computation. Phys. Rev. Lett. 102, 080501 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Khodjasteh, K., Viola, L.: Dynamical quantum error correction of unitary operations with bounded controls. Phys. Rev. A 80, 032314 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Kabytayev, C., Green, T.J., Khodjasteh, K., Biercuk, M.J., Viola, L., Brown, K.R.: Robustness of composite pulses to time-dependent control noise. Phys. Rev. A 90, 012316 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Khodjasteh, K., Bluhm, H., Viola, L.: Automated synthesis of dynamically corrected quantum gates. Phys. Rev. A 86, 042329 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Ho, T.-S., Dominy, J., Rabitz, H.: Landscape of unitary transformations in controlled quantum dynamics. Phys. Rev. A 79, 013422 (2009)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Rabitz, H., Hsieh, M., Rosenthal, C.: Landscape for optimal control of quantum-mechanical unitary transformations. Phys. Rev. A 72, 052337 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Hsieh, M., Rabitz, H.: Optimal control landscape for the generation of unitary transformations. Phys. Rev. A 77, 042306 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Hsieh, M., Rebing, W., Rabitz, H.: Topology of the quantum control landscape for observables. J. Chem. Phys. 130(10), 104109 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Rabitz, H., Ho, T.-S., Hsieh, M., Kosut, R., Demiralp, M.: Topology of optimally controlled quantum mechanical transition probability landscapes. Phys. Rev. A 74, 012721 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Kosut, R.L., Grace, M.D., Brif, C.: Robust control of quantum gates via sequential convex programming. Phys. Rev. A 88, 052326 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Suzuki, M.: General theory of higher-order decomposition of exponential operators and symplectic integrators. Phys. Lett. A 165, 387–395 (1992)Google Scholar
  27. 27.
    Merrill, J.T., Brown, K.R.: Progress in Compensating Pulse Sequences for Quantum Computation. Wiley, New York (2014)CrossRefMATHGoogle Scholar
  28. 28.
    Dawson, C.M., Nielsen, M.A.: The Solovay-Kitaev algorithm. Quant. Inf. Comp. 6, 81–95 (2006)MathSciNetGoogle Scholar
  29. 29.
    Bruer, H.-P.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)Google Scholar
  30. 30.
    Brockwell, P.J., Davis, R.J.: Introduction to Time Series and Forecasting, 2nd edn. Springer, New York (2002)CrossRefMATHGoogle Scholar
  31. 31.
    Hocker, D., Brif, C., Grace, M.D., Donovan, A., Ho, T.-S., Tibbetts, K.M., Wu, R., Rabitz, H.: Characterization of control noise effects in optimal quantum unitary dynamics. Phys. Rev. A 90, 062309 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Sorber, L., Kron: MATLAB Central File Exchange. Retrieved 2013 (2011)Google Scholar
  33. 33.
    Iglin, S.: Grtheory. 2004. MATLAB Central File Exchange. Retrieved (2013)Google Scholar
  34. 34.
    Tibbetts, K.W.M., Brif, C., Grace, M.D., Donovan, A., Hocker, D.L., Ho, T.-S., Wu, R.-B., Rabitz, H.: Exploring the tradeoff between fidelity and time optimal control of quantum unitary transformations. Phys. Rev. A 86, 062309 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Rothman, A., Ho, T.-S., Rabitz, H.: Observable-preserving control of quantum dynamics over a family of related systems. Phys. Rev. A 72, 023416 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Rothman, A., Ho, T.-S., Rabitz, H.: Exploring the level sets of quantum control landscapes. Phys. Rev. A 73, 053401 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    Moore, K.W., Chakrabarti, R., Riviello, G., Rabitz, H.: Search complexity and resource scaling for the quantum optimal control of unitary transformations. Phys. Rev. A 83, 012326 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    Rabitz, H.A., Hsieh, M.M., Rosenthal, C.M.: Quantum optimally controlled transition landscapes. Science 303(5666), 1998–2001 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    Khodjasteh, K., Lidar, D.A., Viola, L.: Arbitrarily accurate dynamical control in open quantum systems. Phys. Rev. Lett. 104, 090501 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Hocker, D., Zheng, Y., Kosut, R., Brun, T., Rabitz, H.: Survey of control performance in quantum information processing. Quant. Inf. Proc. (submitted)Google Scholar
  41. 41.
    Saffman, M., Walker, T.G., Mølmer, K.: Quantum information with rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Saffman, M., Walker, T.G.: Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped rydberg atoms. Phys. Rev. A 72, 022347 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    Schwabl, F.: Quantum Mechanics, 3rd edn. Springer, Berlin (2002)CrossRefMATHGoogle Scholar
  44. 44.
    Stark, H., Woods, J.W.: Probability, Random Processes, and Estimation Theory for Engineers. Prentice Hall, Englewood Cliffs, NJ (1986)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA
  2. 2.SC Solutions IncSunnyvaleUSA

Personalised recommendations