Quantum Information Processing

, Volume 15, Issue 7, pp 2819–2838 | Cite as

Dynamics of quantum correlation for a qubit–qutrit system in the presence of the dephasing environments

  • Xiao-Ning HaoEmail author
  • Jin-Chuan Hou
  • Jun-Qi Li


We analytically study the dynamic behaviors of quantum correlation measured by three kinds of measures including quantum discord (QD), geometric quantum discord (GQD) and one-norm GQD for a qubit–qutrit system under the influence of dephasing environments with Ohmic-like spectral densities at nonzero temperature. It is shown that the similar evolution behaviors may be obtained for sub-Ohmic and Ohmic reservoirs. By properly choosing the system’s initial states and reservoir temperature, quantum correlation can take on some interesting results, such as the frozen and double sudden transition as well as the “revival” phenomenon, etc. Meanwhile, the remarkable similarities and differences among these correlation measures are also analyzed in detail and some significant results are presented. Our results provide some important information for the application of quantum correlation in hybrid qubit–qutrit systems in quantum information.


Quantum correlation Dynamics Dephasing environments 



We thank to Shun-Long Luo and Shuang-Shuang Fu for useful discussion on one-norm GQD. This work was supported by the Natural Science Foundation of China under Grants Nos. 11171249, 11105087, 61275210, 11275118, 11404198 , Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(STIP) under Grant No. 011152901012, International Cooperation Project of Shanxi Province under Grants No. 2014081027-2, and Youth Foundation of Taiyuan University of Technology under Grants No. 2014QN024.


  1. 1.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Theor. 34, 6899 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Werlang, T., Souza, S., Fanchini, F.F., Villas Boas, C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Mazzola, L., Piilo, J., Maniscalco, S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Maziero, J., Céleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Li, J.Q., Cui, X.L., Liang, J.Q.: The dynamics of quantum correlation with two controlled qubits under classical dephasing environment. Ann. Phys. 354, 365 (2015)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Xu, J.S., Xu, X.Y., Li, C.F., Zhang, C.J., Zou, X.B., Guo, G.C.: Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 7 (2010)ADSGoogle Scholar
  15. 15.
    Auccaise, R., Cleri, L.C., Soares-Pinto, D.O., de Azevedo, E.R., Maziero, J., Souza, A.M., Bonagamba, T.J., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Environment-induced sudden transition in quantum discord dynamics. Phys. Rev. Lett. 107, 140403 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Rong, X., Jin, F., Wang, Z., Geng, J., Ju, C., Wang, Y., Zhang, R., Duan, C., Shi, M., Du, J.: Experimental protection and revival of quantum correlation in open solid systems. Phys. Rev. B 88, 054419 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Li, B., Wang, Z.X., Fei, S.M.: Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A 83, 022321 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Li, J.Q., Liu, J., Liang, J.Q.: Environment-induced quantum correlations in a driven two-qubit system. Phys. Scr. 85, 065008 (2012)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    Hassan, A.S.M., Lari, B., Joag, P.S.: Tight lower bound to the geometric measure of quantum discord. Phys. Rev. A 85, 024302 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Rana, S., Parashar, P.: Tight lower bound on geometric discord of bipartite states. Phys. Rev. A 85, 024102 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Karpat, G., Gedik, Z.: Correlation dynamics of qubit-qutrit systems in a classical dephasing environment. Phys. Lett. A 375, 4166 (2011)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Zhang, G.F., Fan, H., Ji, A.L., Jiang, Z.T., Abliz, A., Liu, W.M.: Quantum correlations in spin models. Ann. Phys. 326, 2694 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Dakić, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, Č., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)CrossRefGoogle Scholar
  25. 25.
    Xu, J.: Geometric global quantum discord. J. Phys. A: Math. Theor. 45, 405304 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Liu, L., Zhang, J., Cheng, S., Tong, D.: Dynamics of geometric measure of quantum discord of two qubits in independent reservoirs. J. Phys. Soc. Jpn. 82, 064002 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Wei, H.R., Ren, B.C., Deng, F.G.: Geometric measure of quantum discord for a two-parameter class of states in a qubit-qutrit system under various dissipative channels. Quantum Inf. Process. 12, 1109 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hu, X., Fan, H., Zhou, D.L., Liu, W.M.: Quantum correlating power of local quantum channels. Phys. Rev. A 87, 032340 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Ha, K.C., Kye, S.H.: Optimality for indecomposable entanglement witnesses. Phys. Rev. A 86, 034301 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Tufarelli, T., Girolami, D., Vasile, R., Bose, S., Adesso, G.: Quantum resources for hybrid communication via qubit-oscillator states. Phys. Rev. A 86, 052326 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Nakano, T., Piani, M., Adesso, G.: Negativity of quantumness and its interpretations. Phys. Rev. A 88, 012117 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.S.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Paula, F.M., Silva, I.A., Montealegre, J.D., et al.: Observation of environment-induced double sudden transitions in geometric quantum correlations. Phys. Rev. Lett. 111, 250401 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Walborn, S.P., Lemelle, D.S., Almeida, M.P., Souto Ribeiro, P.H.: Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006)Google Scholar
  37. 37.
    Girolami, D., Adesso, G.: Interplay between computable measures of entanglement and other quantum correlations. Phys. Rev. A 84, 052110 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    Guo, J.L., Wei, J.L., Qin, W.: Enhancement of quantum correlations in qubit-qutrit system under decoherence of finite temperature. Quantum Inf. Process. 14, 1399 (2015)ADSCrossRefzbMATHGoogle Scholar
  39. 39.
    Bar-Gill, N., Bhaktavatsala Rao, D.D., Kurizki, G.: Creating nonclassical states of bose-Einstein condensates by dephasing collisions. Phys. Rev. Lett. 107, 010404 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Magnus, W.: On the exponential solution of differential equations for linear operators. Commun. Pure Appl. Math. 7, 649 (1954)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MathematicsTaiyuan University of TechnologyTaiyuanPeople’s Republic of China
  2. 2.Institute of Theoretical PhysicsShanxi UniversityTaiyuanPeople’s Republic of China

Personalised recommendations