Quantum Information Processing

, Volume 15, Issue 6, pp 2593–2603 | Cite as

Efficient quantum dialogue using entangled states and entanglement swapping without information leakage

  • He Wang
  • Yu Qing Zhang
  • Xue Feng Liu
  • Yu Pu Hu


We propose a novel quantum dialogue protocol by using the generalized Bell states and entanglement swapping. In the protocol, a sequence of ordered two-qutrit entangled states acts as quantum information channel for exchanging secret messages directly and simultaneously. Besides, a secret key string is shared between the communicants to overcome information leakage. Different from those previous information leakage-resistant quantum dialogue protocols, the particles, composed of one of each pair of entangled states, are transmitted only one time in the proposed protocol. Security analysis shows that our protocol can overcome information leakage and resist several well-known attacks. Moreover, the efficiency of our scheme is acceptable.


Bidirectional quantum secure communication Two-qutrit entangled state Quantum dialogue Entanglement swapping  Generalized Bell-basis measurement 



This work is supported by the National Natural Science Foundation of China (Grant Nos. 61272481, 61402352) and China Postdoctoral Science Foundation (Grant No. 2014M5 62377).


  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179 (1884)Google Scholar
  2. 2.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Cai, Q.Y., Li, B.W.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21, 601–603 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Cai, Q.Y., Li, B.W.: Improving the capacity of the Bostrom-Felbinger protocol. Phys. Rev. A 69, 054301 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Beige, A., Englert, B.G., Kurtsiefer, C., et al.: Secure communication with a publicly known key. Acta Phys. Pol. A 101, 357 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Yan, F.L., Zhang, X.: Secure direct communication using Einstein-Podolsky-Rosen pairs and teleportation. Eur. Phys. J. B 41, 75–78 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Zhu, A.D., Yan, X., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Deng, F.G., Long, G.L.: Reply to comment on secure direct communication with a quantum one-time-pad. Phys. Rev. A 72, 016302 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs. Phys. Lett. A 359, 359–365 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 6–10 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Man, Z.X., Zhang, Z.J., Li, Y.: Quantum dialogue revisited. Chin. Phys. Lett. 22, 22–24 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Ji, X., Zhang, S.: Secure quantum dialogue based on single-photon. Chin. Phys. 15, 1418–1420 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Yang, Y.G., Wen, Q.Y.: Quasi-secure quantum dialogue using single photons. Sci. China Ser. G: Physi. Mech. Astron. 50, 558–562 (2007)Google Scholar
  17. 17.
    Jin, X.R., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354, 67–70 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23, 1680–1682 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Man, Z.X., Xia, Y.J., Nguyen, B.A.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B: At. Mol. Opt. Phys. 39, 3855–3864 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Chen, Y., Man, Z.X., Xia, Y.J.: Quantum bidirectional secure direct communication via entanglement swapping. Chin. Phys. Lett. 24, 19–22 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Gao, F., et al.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China Ser. G: Phys. Mech. Astron. 51, 559 (2008)Google Scholar
  22. 22.
    Tan, Y.G., Cai, Q.Y.: Classical Correlation in Quantum Dialogue. Int. J. Quantum Inf. 6, 325 (2008)CrossRefGoogle Scholar
  23. 23.
    Wang, H., Zhang, Y.Q., Hu, Y.P., et al.: Two quantum dialogue schemes based on Bell states and two-qutrit entangled states without information leakage. J. Nat. Univ. Def. Technol. 34, 10–13 (2012)Google Scholar
  24. 24.
    Wang, H., Zhang, Y.Q., Hu, Y.P.: Efficient quantum dialogue by using the two-qutrit entangled states without information leakage. Int. J. Theor. Phys. 52, 1745–1750 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Shi, G.F., Xi, X.Q., Tian, X.L., Yue, R.H.: Bidirectional quantum secure communication based on a shared private Bell state. Optics communications 282, 2460–2463 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Shi, G.F.: Bidirectional quantum secure communication scheme based on Bell states and auxiliary particles. Optics communications 283, 5275–5278 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Gao, G.: Two quantum dialogue protocols without information leakage. Optics communications 283, 2288–2293 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Ye, T.Y., Jiang, L.Z.: Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared Bell state. Phys. Scr. 89, 015103 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Ye, T.Y.: Quantum dialogue without information leakage using a single quantum entangled state. Int. J. Theor. Phys. 53, 3719–3727 (2014)CrossRefzbMATHGoogle Scholar
  30. 30.
    Karimipour, V., Bahraminasab, A.: Entanglement swapping of generalized cat states and secret sharing. Phys. Rev. A 65, 042320 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Zang, B., Liu, X.S., Li, Y.S., Long, G.L.: High-dimensional multi-particle cat-like state teleportation. Commun. Theor. Phys. 38, 537–540 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zhan, Y.B., Zhang, L.L., Zhang, Q.Y.: Quantum secure direct communication by entangled qutrits and entanglement swapping. Opt. Commun. 282, 4633–4636 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the quantum secure direct communication by entangled qutrits and entanglement swapping against intercept-and-resend attack. Opt. Commun. 283, 1566–1568 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Renes, J.M.: Spherical-code key-distribution protocols for qubits. Phys. Rev. A 70, 052314 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Wang, X.B.: Quantum key distribution with two-qubit quantum codes. Phys. Rev. Lett. 92, 077902 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    Wang, H.F., Zhang, S., Yeon, K.H., Um, C.I.: Quantum secure direct communication by using a GHZ state. J. Korean Phys. Soc. 49, 459–463 (2006)Google Scholar
  39. 39.
    Cabello, A.: Quantum key distribution in Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • He Wang
    • 1
  • Yu Qing Zhang
    • 1
    • 2
  • Xue Feng Liu
    • 1
  • Yu Pu Hu
    • 1
  1. 1.The National Key Laboratory of Integrated Services NetworksXidian UniversityXi’anChina
  2. 2.National Computer Network Intrusion Protection CenterGraduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations