Quantum Information Processing

, Volume 15, Issue 6, pp 2569–2591 | Cite as

On the second-order asymptotics for entanglement-assisted communication

  • Nilanjana Datta
  • Marco Tomamichel
  • Mark M. Wilde
Article

Abstract

The entanglement-assisted classical capacity of a quantum channel is known to provide the formal quantum generalization of Shannon’s classical channel capacity theorem, in the sense that it admits a single-letter characterization in terms of the quantum mutual information and does not increase in the presence of a noiseless quantum feedback channel from receiver to sender. In this work, we investigate second-order asymptotics of the entanglement-assisted classical communication task. That is, we consider how quickly the rates of entanglement-assisted codes converge to the entanglement-assisted classical capacity of a channel as a function of the number of channel uses and the error tolerance. We define a quantum generalization of the mutual information variance of a channel in the entanglement-assisted setting. For covariant channels, we show that this quantity is equal to the channel dispersion and thus completely characterize the convergence toward the entanglement-assisted classical capacity when the number of channel uses increases. Our results also apply to entanglement-assisted quantum communication, due to the equivalence between entanglement-assisted classical and quantum communication established by the teleportation and super-dense coding protocols.

Keywords

Quantum Shannon theory Second-order asymptotics Entanglement-assisted communication 

References

  1. 1.
    Arimoto, S.: On the converse to the coding theorem for discrete memoryless channels. IEEE Trans. Inf. Theory 19(3), 357–359 (1973)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Berta, M., Christandl, M., Renner, R.: The quantum reverse Shannon theorem based on one-shot information theory. Commun. Math. Phys. 306(3), 579–615 (2011). arXiv:0912.3805 ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bennett, C.H., Devetak, I., Harrow, A.W., Shor, P.W., Winter, A.: Quantum reverse Shannon theorem. IEEE Trans. Inf. Theory 60(5), 1–34 (2014). arXiv:0912.5537 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Beigi, S., Gohari, A.: Quantum achievability proof via collision relative entropy. IEEE Trans. Inf. Theory 60(12), 7980–7986 (2014). arXiv:1312.3822 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bowen, G.: Quantum feedback channels. IEEE Trans. Inf. Theory 50(10), 2429–2434 (2004). arXiv:quant-ph/0209076 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bradler, K.: An infinite sequence of additive channels: the classical capacity of cloning channels. IEEE Trans. Inf. Theory 57(8), 5497–5503 (2011). arXiv:0903.1638 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted classical capacity of noisy quantum channels. Phys. Rev. Lett. 83(15), 3081–3084 (1999). arXiv:quant-ph/9904023 ADSCrossRefGoogle Scholar
  9. 9.
    Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory 48, 2637–2655 (2002). arXiv:quant-ph/0106052 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Christandl, M., König, R., Renner, R.: Postselection technique for quantum channels with applications to quantum cryptography. Phys. Rev. Lett. 102(2), 020504 (2009). arXiv:0809.3019 ADSCrossRefGoogle Scholar
  12. 12.
    Cooney, T., Mosonyi, M., Wilde, M.M.: Strong converse exponents for a quantum channel discrimination problem and quantum-feedback-assisted communication (August 2014). arXiv:1408.3373
  13. 13.
    Csiszár, I.: The method of types. IEEE Trans. Inf. Theory 44(6), 2505–2523 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, New York (1991)CrossRefMATHGoogle Scholar
  15. 15.
    Datta, N., Hsieh, M.-H.: One-shot entanglement-assisted quantum and classical communication. IEEE Trans. Inf. Theory 59(3), 1929–1939 (2013). arXiv:1105.3321 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Datta, N., Leditzky, F.: Second-order asymptotics for source coding, dense coding and pure-state entanglement conversions. IEEE Trans. Inf. Theory 61(1), 582–608 (2015). arXiv:1403.2543 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fannes, M., Haegeman, B., Mosonyi, M., Vanpeteghem, D.: Additivity of minimal entropy output for a class of covariant channels (October 2004). arXiv:quant-ph/0410195
  18. 18.
    Gupta, M.K., Wilde, M.M.: Multiplicativity of completely bounded \(p\)-norms implies a strong converse for entanglement-assisted capacity. Commun. Math. Phys. 334(2), 867–887 (2015). arXiv:1310.7028 ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hastings, M.B.: Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5, 255–257 (2009). arXiv:0809.3972 CrossRefGoogle Scholar
  20. 20.
    Hayashi, M.: Information spectrum approach to second-order coding rate in channel coding. IEEE Trans. Inf. Theory 55(11), 4947–4966 (2009). arXiv:0801.2242 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hsieh, M.-H., Devetak, I., Winter, A.: Entanglement-assisted capacity of quantum multiple-access channels. IEEE Trans. Inf. Theory 54(7), 3078–3090 (2008). arXiv:quant-ph/0511228 MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Hayashi, M., Nagaoka, H.: General formulas for capacity of classical-quantum channels. IEEE Trans. Inf. Theory 49(7), 1753–1768 (2003). arXiv:quant-ph/0206186 MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Holevo, A.S.: On entanglement assisted classical capacity. J. Math. Phys. 43(9), 4326–4333 (2002). arXiv:quant-ph/0106075 ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Holevo, A.S.: Remarks on the classical capacity of quantum channel (December 2002). arXiv:quant-ph/0212025
  25. 25.
    Hiai, F., Petz, D.: The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143(1), 99–114 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Horodecki, M., Shor, P.W., Ruskai, M.B.: Entanglement breaking channels. Rev. Math. Phys. 15(6), 629–641 (2003). arXiv:quant-ph/0302031 MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Kumagai, W., Hayashi, M.: Entanglement concentration is irreversible. Phys. Rev. Lett. 111(13), 130407 (2013). arXiv:1305.6250 ADSCrossRefGoogle Scholar
  28. 28.
    Li, K.: Second order asymptotics for quantum hypothesis testing. Ann. Stat. 42(1), 171–189 (2014). arXiv:1208.1400 MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Leung, D., Matthews, W.: On the power of PPT-preserving and non-signalling codes. IEEE Trans. Inf. Theory 61(8), 4486–4499 (2015). arXiv:1406.7142 MathSciNetCrossRefGoogle Scholar
  30. 30.
    Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54(12), 122203 (2013). arXiv:1306.3142 ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Matthews, W., Wehner, S.: Finite blocklength converse bounds for quantum channels. IEEE Trans. Inf. Theory 60(11), 7317–7329 (2014). arXiv:1210.4722 MathSciNetCrossRefGoogle Scholar
  32. 32.
    Polyanskiy, Y., Poor, H.V., Verdú, S.: Channel coding rate in the finite blocklength regime. IEEE Trans. Inf. Theory 56(5), 2307–2359 (2010)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Renner, R.: Symmetry of large physical systems implies independence of subsystems. Nat. Phys. 3(9), 645–649 (2007). arXiv:quant-ph/0703069 CrossRefGoogle Scholar
  34. 34.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Shannon, C.E.: The zero-error capacity of a noisy channel. IRE Trans. Inf. Theory IT–2, 8–19 (1956)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Strassen, V.: Asymptotische Abschätzungen in Shannons Informationstheorie. In: Transactions of the Third Prague Conference on Information Theory, pp. 689–723. Prague (1962)Google Scholar
  37. 37.
    Schumacher, B., Westmoreland, M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56(1), 131–138 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    Tomamichel, M., Berta, M., Renes, J.M.: Quantum coding with finite resources (April 2015). arXiv:1504.04617
  39. 39.
    Tomamichel, M., Hayashi, M.: A hierarchy of information quantities for finite block length analysis of quantum tasks. IEEE Trans. Inf. Theory 59(11), 7693–7710 (2013). arXiv:1208.1478 MathSciNetCrossRefGoogle Scholar
  40. 40.
    Tomamichel, M., Tan, V.Y.F.: Second-order asymptotics for the classical capacity of image-additive quantum channels. Commun. Math. Phys. 338(1), 103–137 (2015). doi:10.1007/s00220-015-2382-0. arXiv:1308.6503 ADSMathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Werner, R.F., Holevo, A.S.: Counterexample to an additivity conjecture for output purity of quantum channels. J. Math. Phys. 43(9), 4353–4357 (2002). arXiv:quant-ph/0203003 ADSMathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). arXiv:1106.1445 CrossRefMATHGoogle Scholar
  43. 43.
    Wang, L., Renner, R.: One-shot classical-quantum capacity and hypothesis testing. Phys. Rev. Lett. 108(20), 200501 (2012). arXiv:1007.5456 ADSCrossRefGoogle Scholar
  44. 44.
    Wilde, M.M., Winter, A., Yang, D.: Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 331(2), 593–622 (2014). arXiv:1306.1586 ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Statistical Laboratory, Centre for Mathematical SciencesUniversity of CambridgeCambridgeUK
  2. 2.Centre for Quantum TechnologiesNational University of SingaporeSingaporeSingapore
  3. 3.School of PhysicsThe University of SydneySydneyAustralia
  4. 4.Department of Physics and Astronomy, Center for Computation and Technology, Hearne Institute for Theoretical PhysicsLouisiana State UniversityBaton RougeUSA

Personalised recommendations