Quantum Information Processing

, Volume 15, Issue 5, pp 2067–2090 | Cite as

Security of a semi-quantum protocol where reflections contribute to the secret key

  • Walter O. Krawec


In this paper, we provide a proof of unconditional security for a semi-quantum key distribution protocol introduced in a previous work. This particular protocol demonstrated the possibility of using X basis states to contribute to the raw key of the two users (as opposed to using only direct measurement results) even though a semi-quantum participant cannot directly manipulate such states. In this work, we provide a complete proof of security by deriving a lower bound of the protocol’s key rate in the asymptotic scenario. Using this bound, we are able to find an error threshold value such that for all error rates less than this threshold, it is guaranteed that A and B may distill a secure secret key; for error rates larger than this threshold, A and B should abort. We demonstrate that this error threshold compares favorably to several fully quantum protocols. We also comment on some interesting observations about the behavior of this protocol under certain noise scenarios.


Quantum key distribution Semi-quantum cryptography  Von Neumann entropy Asymptotic key rate 



The author would like to thank the anonymous reviewers for their valuable comments.


  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175. New York (1984)Google Scholar
  2. 2.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Acin, A., Gisin, N., Scarani, V.: Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks. Phys. Rev. A 69, 012309 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Fung, C.-H.F., Lo, H.-K.: Security proof of a three-state quantum-key-distribution protocol without rotational symmetry. Phys. Rev. A 74, 042342 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. In: First International Conference on Quantum, Nano, and Micro Technologies, 2007. ICQNM ’07, pp. 10–10 (2007)Google Scholar
  7. 7.
    Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79, 032341 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jian, W., Sheng, Z., Quan, Z., Chao-Jing, T.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)CrossRefGoogle Scholar
  9. 9.
    Yu, K.-F., Yang, C.-W., Liao, C.-H., Hwang, T.: Authenticated semi-quantum key distribution protocol using bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)Google Scholar
  10. 10.
    Zou, X., Qiu, D., Li, L., Lihua, W., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79, 052312 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Xian-Zhou, Z., Wei-Gui, G., Yong-Gang, T., Zhen-Zhong, R., Xiao-Tian, G.: Quantum key distribution series network protocol with m-classical bobs. Chin. Phys. B 18(6), 2143 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Krawec, W.O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process. 13(11), 2417–2436 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91(3), 032323 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Kun-Fei, Y., Yang, C.-W., Liao, C.-H., Hwang, T.: Authenticated semi-quantum key distribution protocol using bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Sun, Z.-W., Du, R.-G., Long, D.-Y.: Quantum key distribution with limited classical bob. Int. J. Quantum Inf. 11(1), 1350005 (2013)Google Scholar
  16. 16.
    Hua, L., Cai, Q.-Y.: Quantum key distribution with classical alice. Int. J. Quantum Inf. 6(06), 1195–1202 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Zou, X., Qiu, D., Zhang, S., Mateus, P.: Semiquantum key distribution without invoking the classical partys measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Li, Q., Chan, W.H., Zhang, S.: Real semiquantum key distribution with secure delegated quantum computation. ArXiv preprint arXiv:1508.07090 (2015)
  19. 19.
    Li, Q., Chan, W.H., Long, D.-Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82, 022303 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical bobs. J. Phys. A: Math. Theor. 46(4), 045304 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wang, J., Zhang, S., Zhang, Q., Tang, C.-J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(5), 1250050 (2012)Google Scholar
  22. 22.
    Yang, C.-W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Inf. 11(5), 1350052 (2013)Google Scholar
  23. 23.
    Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Miyadera, T.: Relation between information and disturbance in quantum key distribution protocol with classical alice. Int. J. Quantum Inf. 9(6), 1427–1435 (2011)Google Scholar
  25. 25.
    Krawec, W.O.: Security Proof of a Semi-quantum Key Distribution Protocol. To appear: IEEE ISIT 2015; ArXiv preprint arXiv:1412.0282 (2015)
  26. 26.
    Krawec, W.O.: Semi-Quantum Key Distribution. PhD thesis, Stevens Institute of Technology, May (2015)Google Scholar
  27. 27.
    Tan, Y., Hua, L., Cai, Q.: Comment on quantum key distribution with classical bob. Phys. Rev. Lett. 102, 098901 (2009)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Boyer, M., Kenigsberg, D., Mor, T.: Boyer, kenigsberg, and mor reply. Phys. Rev. Lett. 102, 098902 (2009)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Briët, J., Harremoës, P.: Properties of classical and quantum Jensen–Shannon divergence. Phys. Rev. A 79(5), 052311 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Krawec, W.O.: An Improved Asymptotic Key Rate Bound for a Mediated Semi-quantum Key Distribution Protocol. ArXiv preprint arXiv:1509.04797 (2015)
  32. 32.
    Watanabe, S., Matsumoto, R., Uyematsu, T.: Tomography increases key rates of quantum-key-distribution protocols. Phys. Rev. A 78(4), 042316 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Kraus, B., Gisin, N., Renner, R.: Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. Phys. Rev. Lett. 95, 080501 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Devetak, I., Winter, A.: Distillation of secret key and entanglement from quantum states. Proc. R. Soc. A: Math. Phys. Eng. Sci. 461(2053), 207–235 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Christandl, M., Renner, R.: Artur Ekert. A Generic Security Proof for Quantum Key Distribution. ArXiv preprint quant-ph/0402131 (2004)Google Scholar
  36. 36.
    Christandl, M., Konig, R., Renner, R.: Postselection technique for quantum channels with applications to quantum cryptography. Phys. Rev. Lett. 102, 020504 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Renner, R.: Symmetry of large physical systems implies independence of subsystems. Nat. Phys. 3(9), 645–649 (2007)CrossRefGoogle Scholar
  38. 38.
    Matsumoto, R.: Improved asymptotic key rate of the B92 protocol. In: IEEE International Symposium on Information Theory Proceedings (ISIT), IEEE 2013, pp. 351–353 (2013)Google Scholar
  39. 39.
    Branciard, C., Gisin, N., Lutkenhaus, N., Scarani, V.: Zero-error attacks and detection statistics in the coherent one-way protocol for quantum cryptography. Quantum Inf. Comput. 7(7), 639–664 (2007)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Iona CollegeNew RochelleUSA

Personalised recommendations