Toward a scalable quantum computing architecture with mixed species ion chains

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


We report on progress toward implementing mixed ion species quantum information processing for a scalable ion-trap architecture. Mixed species chains may help solve several problems with scaling ion-trap quantum computation to large numbers of qubits. Initial temperature measurements of linear Coulomb crystals containing barium and ytterbium ions indicate that the mass difference does not significantly impede cooling at low ion numbers. Average motional occupation numbers are estimated to be \(\bar{n} \approx 130\) quanta per mode for chains with small numbers of ions, which is within a factor of three of the Doppler limit for barium ions in our trap. We also discuss generation of ion–photon entanglement with barium ions with a fidelity of \(F \ge 0.84\), which is an initial step towards remote ion–ion coupling in a more scalable quantum information architecture. Further, we are working to implement these techniques in surface traps in order to exercise greater control over ion chain ordering and positioning.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    The supplementary material includes a video demonstration of shuttling from the loading region to the quantum region of the Sandia Y-Trap.


  1. 1.

    Olmschenk, S., Younge, K.C., Moehring, D.L., Matsukevich, D.N., Maunz, P., Monroe, C.: Manipulation and detection of a trapped \(\text{ Yb }^{+}\) hyperfine qubit. Phys. Rev. A 76, 052314 (2007)

  2. 2.

    Kirchmair, G., Benhelm, J., Zähringer, F., Gerritsma, R., Roos, C.F., Blatt, R.: Deterministic entanglement of ions in thermal states of motion. New J. Phys. 11(2), 023002 (2009)

  3. 3.

    Hayes, D., Matsukevich, D.N., Maunz, P., Hucul, D., Quraishi, Q., Olmschenk, S., Campbell, W., Mizrahi, J., Senko, C., Monroe, C.: Entanglement of atomic qubits using an optical frequency comb. Phys. Rev. Lett. 104, 140501 (2010)

  4. 4.

    Monroe, C., Raussendorf, R., Ruthven, A., Brown, K.R., Maunz, P., Duan, L.-M., Kim, J.: Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014)

  5. 5.

    Moehring, D.L., Maunz, P., Olmschenk, S., Younge, K.C., Matsukevich, D.N., Duan, L.-M., Monroe, C.: Entanglement of single-atom quantum bits at a distance. Nature 449(7158), 68–71 (2007)

  6. 6.

    Luo, L., Hayes, D., Manning, T.A., Matsukevich, D.N., Maunz, P., Olmschenk, S., Sterk, J.D., Monroe, C.: Protocols and techniques for a scalable atom-photon quantum network. Fortschr. Phys. 57(11–12), 1133–1152 (2009)

  7. 7.

    Gurell, J., Biémont, E., Blagoev, K., Fivet, V., Lundin, P., Mannervik, S., Norlin, L.-O., Quinet, P., Rostohar, D., Royen, P., Schef, P.: Laser-probing measurements and calculations of lifetimes of the \(5d^{2}d_{32}\) and \(5d^{2}d_{52}\) metastable levels in \({\rm Ba}ii\). Phys. Rev. A 75, 052506 (2007)

  8. 8.

    Campbell, W.C., Mizrahi, J., Quraishi, Q., Senko, C., Hayes, D., Hucul, D., Matsukevich, D.N., Maunz, P., Monroe, C.: Ultrafast gates for single atomic qubits. Phys. Rev. Lett. 105, 090502 (2010)

  9. 9.

    Schlatter, A., Zeller, S.C., Grange, R., Paschotta, R., Keller, U.: Pulse-energy dynamics of passively mode-locked solid-state lasers above the q-switching threshold. J. Opt. Soc. Am. B 21(8), 1469–1478 (2004)

  10. 10.

    Sun, L., Zhang, L., Yu, H.J., Guo, L., Ma, J.L., Zhang, J., Hou, W., Lin, X.C., Li, J.M.: 880 nm ld pumped passive mode-locked TEM 00 Nd:YVO 4 laser based on SESAM. Laser Phys. Lett. 7(10), 711 (2010)

  11. 11.

    Shu, G., Vittorini, G., Buikema, A., Nichols, C.S., Volin, C., Stick, D., Brown, K.R.: Heating rates and ion-motion control in a \({\sf Y}\)-junction surface-electrode trap. Phys. Rev. A 89, 062308 (2014)

  12. 12.

    Wright, K., Amini, J.M., Faircloth, D.L., Volin, C., Doret, S.C., Hayden, H., Pai, C.-S., Landgren, D.W., Denison, D., Killian, T., Slusher, R.E., Harter, A.W.: Reliable transport through a microfabricated X-junction surface-electrode ion trap. New J. Phys. 15(3), 033004 (2013)

  13. 13.

    Home, J.P., Hanneke, D., Jost, J.D., Leibfried, D., Wineland, D.J.: Normal modes of trapped ions in the presence of anharmonic trap potentials. New J. Phys. 13(7), 073026 (2011)

  14. 14.

    Allcock, D.T.C., Harty, T.P., Janacek, H.A., Linke, N.M., Ballance, C.J., Steane, A.M., Lucas, D.M., Jarecki Jr, R.L., Habermehl, S.D., Blain, M.G., Stick, D., Moehring, D.L.: Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap. Appl. Phys. B 107(4), 913–919 (2012)

  15. 15.

    Daniilidis, N., Narayanan, S., Möller, S.A., Clark, R., Lee, T.E., Leek, P.J., Wallraff, A., Schulz, S., Schmidt-Kaler, F., Häffner, H.: Fabrication and heating rate study of microscopic surface electrode ion traps. New J. Phys. 13(1), 013032 (2011)

  16. 16.

    Graham, R.D., Chen, S.-P., Sakrejda, T., Wright, J., Zhou, Z., Blinov, B.B.: A system for trapping barium ions in a microfabricated surface trap. AIP Adv. 4(5), 057124 (2014)

  17. 17.

    Auchter, C., Chou, C.-K., Noel, T.W., Blinov, B.B.: Ion-photon entanglement and bell inequality violation with \({}^{138}\text{ Ba }^+\). J. Opt. Soc. Am. B 31(7), 1568–1572 (2014)

  18. 18.

    Sterk, J.D., Luo, L., Manning, T.A., Maunz, P., Monroe, C.: Photon collection from a trapped ion-cavity system. Phys. Rev. A 85, 062308 (2012)

  19. 19.

    Clark, C.R., Chou, C.-W., Ellis, R., Jeff Hunker, A., Kemme, S.A., Maunz, P., Tabakov, B., Tigges, C., Stick, D.L.: Characterization of fluorescence collection optics integrated with a microfabricated surface electrode ion trap. Phys. Rev. Appl. 1, 024004 (2014)

  20. 20.

    Jechow, A., Streed, E.W., Norton, B.G., Petrasiunas, M.J., Kielpinski, D.: Wavelength-scale imaging of trapped ions using a phase fresnel lens. Opt. Lett. 36(8), 1371–1373 (2011)

  21. 21.

    Shu, G., Chou, C.-K., Kurz, N., Dietrich, M.R., Blinov, B.B.: Efficient fluorescence collection and ion imaging with the “tack” ion trap. J. Opt. Soc. Am. B 28(12), 2865–2870 (2011)

Download references


The authors would like to thank Matthew R. Hoffman, Spencer R. Williams, and Anupriya Jayakumar for useful conversations. We would also like to acknowledge support from the Intelligence Advanced Research Projects Activity through the Multi-Qubit Coherent Operations Program and the National Science Foundation under Grant No. PHY-1067054.

Author information

Correspondence to John Wright.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 1139 KB)

Supplementary material 1 (mp4 1139 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wright, J., Auchter, C., Chou, C. et al. Toward a scalable quantum computing architecture with mixed species ion chains. Quantum Inf Process 15, 5339–5349 (2016).

Download citation


  • Ion trapping
  • Sympathetic cooling
  • Mixed species Ion chains
  • Scalable quantum computing architecture