Quantum Information Processing

, Volume 15, Issue 1, pp 85–101 | Cite as

The staggered quantum walk model

  • R. Portugal
  • R. A. M. Santos
  • T. D. Fernandes
  • D. N. Gonçalves
Article

Abstract

There are at least three models of discrete-time quantum walks (QWs) on graphs currently under active development. In this work, we focus on the equivalence of two of them, known as Szegedy’s and staggered QWs. We give a formal definition of the staggered model and discuss generalized versions for searching marked vertices. Using this formal definition, we prove that any instance of Szegedy’s model is equivalent to an instance of the staggered model. On the other hand, we show that there are instances of the staggered model that cannot be cast into Szegedy’s framework. Our analysis also works when there are marked vertices. We show that Szegedy’s spatial search algorithms can be converted into search algorithms in staggered QWs. We take advantage of the similarity of those models to define the quantum hitting time in the staggered model and to describe a method to calculate the eigenvalues and eigenvectors of the evolution operator of staggered QWs.

Keywords

Quantum walks Staggered model Coinless model  Szegedy  Hitting time 

Notes

Acknowledgments

RP acknowledges financial support from Faperj (Grant No. E-26/102.350/2013) and CNPq (Grants Nos. 304709/2011-5, 474143/2013-9, and 400216/2014-0). RAMS acknowledges financial support from Capes/Faperj E-45/2013. RP thanks helpful discussions with Stefan Boettcher and Andris Ambainis’ group. The authors thank the anonymous referees for useful suggestions.

References

  1. 1.
    Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687–1690 (1993)CrossRefADSGoogle Scholar
  2. 2.
    Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5–6), 551–574 (1996)MATHCrossRefADSGoogle Scholar
  3. 3.
    Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th Symposium on Foundations of Computer Science, pp. 32–41 (2004)Google Scholar
  5. 5.
    Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (2004)Google Scholar
  6. 6.
    Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1), 142–164 (2011)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Krovi, H., Magniez, F., Ozols, M., Roland, J.: Finding is as easy as detecting for quantum walks. In: Proceedings of the 37th International Colloquium Conference on Automata, Languages and Programming, pp. 540–551, (2010)Google Scholar
  8. 8.
    Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Mosca, M.: Quantum algorithms. In: Meyers, Robert A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 7088–7118. Springer, New York (2009)CrossRefGoogle Scholar
  10. 10.
    Higuchi, Yusuke, Konno, Norio, Sato, Iwao, Segawa, Etsuo: Spectral and asymptotic properties of grover walks on crystal lattices. J. Funct. Anal. 267(11), 4197–4235 (2014)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Santha, M.: Quantum walk based search algorithms. In: Proceedings of the 5th Theory and Applications of Models of Computation (TAMC08), pp. 31–46 (2008)Google Scholar
  12. 12.
    Patel, A., Raghunathan, K.S., Rungta, P.: Quantum random walks do not need a coin toss. Phys. Rev. A 71, 032347 (2005)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Patel, A., Raghunathan, K.S., Rahaman, MdA: Search on a hypercubic lattice using a quantum random walk. ii. \(d=2\). Phys. Rev. A 82, 032331 (2010)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Falk, M.: Quantum search on the spatial grid. arXiv:1303.4127, (2013)
  15. 15.
    Ambainis, A., Portugal, R., Nahimov, N.: Spatial search on grids with minimum memory. Quantum Inf. Comput. 15, 1233–1247 (2015)Google Scholar
  16. 16.
    Portugal, R., Boettcher, S., Falkner, S.: One-dimensional coinless quantum walks. Phys. Rev. A 91, 052319 (2015)CrossRefADSGoogle Scholar
  17. 17.
    Santos, R.A.M., Portugal, R., Boettcher, S.: Moments of coinless quantum walks on lattices. Quantum Inf. Process. 14(9), 3179–3191 (2015)Google Scholar
  18. 18.
    Hamada, M., Konno, N., Segawa, E.: Relation between coined quantum walks and quantum cellular automata. RIMS Kokyuroku 1422, 1–11 (2005)Google Scholar
  19. 19.
    Strauch, F.W.: Connecting the discrete- and continuous-time quantum walks. Phys. Rev. A 74, 030301 (2006)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the 33rd ACM Symposium on Theory of computing, pp. 50–59 (2000)Google Scholar
  21. 21.
    Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)CrossRefADSGoogle Scholar
  22. 22.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)CrossRefADSGoogle Scholar
  23. 23.
    Portugal, Renato: Quantum Walks and Search Algorithms. Springer, New York (2013)MATHCrossRefGoogle Scholar
  24. 24.
    Whitney, H.: Congruent graphs and the connectivity of graphs. Am. J. Math. 54(1), 150–168 (1932)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Harary, F.: Graph Theory. Addison-Wesley Series in Mathematics. Perseus Books, New York (1994)Google Scholar
  26. 26.
    Beineke, L.W.: Characterizations of derived graphs. J. Comb. Theory 9(2), 129–135 (1970)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Krausz, J.: Démonstration nouvelle d’une théorème de Whitney sur les réseaux. Mat. Fiz. Lapok 50, 75–85 (1943)MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • R. Portugal
    • 1
  • R. A. M. Santos
    • 1
  • T. D. Fernandes
    • 1
    • 2
  • D. N. Gonçalves
    • 3
  1. 1.National Laboratory of Scientific Computing - LNCCPetrópolisBrazil
  2. 2.Universidade Federal do Espírito Santo - UFESAlegreBrazil
  3. 3.Centro de Educação Tecnológica Celso Suckow da Fonseca - CEFETPetrópolisBrazil

Personalised recommendations