Quantum Information Processing

, Volume 14, Issue 12, pp 4395–4412 | Cite as

Improving the payoffs of cooperators in three-player cooperative game using weak measurements

Article

Abstract

In this paper, an efficient method is proposed to improve the payoffs of cooperators in cooperative three-player quantum game under the action of amplitude damping, bit flip and depolarizing channels using weak measurements. It is shown that the payoffs of cooperators can be enhanced to a great extent in the case of amplitude damping channel, and the payoff sudden death can be avoided in the case of bit flip and depolarizing channels. Moreover, the payoffs of cooperators tend to a constant by changing weak measurement strength in spite of sufficiently strong decoherence.

Keywords

Three-player cooperative game Decoherence The payoff  Weak measurement 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No.11374096) and the Major Program for the Research Foundation of Education Bureau of Hunan Province of China (Grant No. 10A026).

References

  1. 1.
    von-Neumann, J., Morgenstein, O.: The Theory of Games and Economic Behaviour. Princeton University Press, Princeton, NJ (1944)Google Scholar
  2. 2.
    Nash, J.: Equilibrium points in n-person games. Proc. Nat. Acad. Sci. 36, 48 (1950)MathSciNetCrossRefADSMATHGoogle Scholar
  3. 3.
    Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052 (1999)MathSciNetCrossRefADSMATHGoogle Scholar
  4. 4.
    Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phy. Rev. Lett. 83, 3077 (1999)MathSciNetCrossRefADSMATHGoogle Scholar
  5. 5.
    Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291 (2000)MathSciNetCrossRefADSMATHGoogle Scholar
  6. 6.
    Flitney, A.P., Abbott, D.: Quantum games with decoherence. J. Phys. A 38, 449 (2005)MathSciNetCrossRefADSMATHGoogle Scholar
  7. 7.
    Cheon, T., Iqbal, A.: Bayesian Nash equilibria and Bell inequalities. J. Phys. Soc. Jpn. 77, 024801 (2008)CrossRefADSGoogle Scholar
  8. 8.
    Iqbal, A., Abbott, D.: Quantum matching pennies game. J. Phy. Soc. Jpn. 78, 014803 (2009)CrossRefADSGoogle Scholar
  9. 9.
    Iqbal, A., Cheon, T., Abbott, D.: Probabilistic analysis of three-player symmetric quantum games played using the Einstein–Podolsky–Rosen–Bohm setting. Phys. Lett. A 372, 6564 (2008)MathSciNetCrossRefADSMATHGoogle Scholar
  10. 10.
    Iqbal, A., Toor, A.H.: Evolutionarily stable strategies in quantum games. Phys. Lett. A 280, 249 (2001)MathSciNetCrossRefADSMATHGoogle Scholar
  11. 11.
    Flitney, A.P., Abbott, D.: Quantum version of the Monty Hall problem. Phys. Rev. A 65, 062318 (2002)CrossRefADSGoogle Scholar
  12. 12.
    Iqbal, A., Toor, A.H.: Quantum mechanics gives stability to Nash equilibrium. Phys. Rev. A 65, 022036 (2002)MathSciNetGoogle Scholar
  13. 13.
    Eisert, J., Wilkens, M.: Quantum games. J. Mod. Opt. 47, 2543 (2000)MathSciNetCrossRefADSMATHGoogle Scholar
  14. 14.
    Ramzan, M., Khan, M.K.: Noise effects in a three-player Prisoner’s dilemma quantum game. J. Phys. A Math. Theor. 41, 435302 (2008)MathSciNetCrossRefADSMATHGoogle Scholar
  15. 15.
    Flitney, A.P., Ng, J., Abbott, D.: Quantum Parrondo’s games. Phys. A 314, 35 (2002)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Iqbal, A., Toor, A.H.: Quantum cooperative games. Phys. Lett. A 293, 103 (2002)MathSciNetCrossRefADSMATHGoogle Scholar
  17. 17.
    Johnson, N.F.: Playing a quantum game with a corrupted source. Phys. Rev. A 63, 020302(R) (2001)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    DAriano, G.M., Gill, R.D., Keyl, M., Kuemmerer, B., Maassen, H., Werner, R.F.: The quantum Monty Hall problem. Quant. Inf. Comp. 2, 355 (2002)MathSciNetMATHGoogle Scholar
  19. 19.
    Miszczak, J.A., Gawron, P., Puchala, Z.: Qubit flip game on a Heisenberg spin chain. arXiv:1108.0642 [quant-ph], (2011)
  20. 20.
    Puya, S., Hoshang, H.: Quantum solution to a three player Kolkata restaurant problem using entangled qutrits. arXiv:1111.1962 [quant-ph], (2011)
  21. 21.
    Chakrabarti, A.S., Chakrabarti, B.K., Chatterjee, A., Mitra, M.: The Kolkata paise restaurant problem and resource utilization. Phys. A 388, 2420–2426 (2009)CrossRefGoogle Scholar
  22. 22.
    Benjamin, S.C., Hayden, P.M.: Multiplayer quantum games. Phys. Rev. A 64, 030301(R) (2001)CrossRefADSGoogle Scholar
  23. 23.
    Chen, Q., Wang, Y.: N-player quantum minority game. Phys. Lett. A A 327, 98,102 (2004)MathSciNetMATHGoogle Scholar
  24. 24.
    Flitney, A.P., Greentree, A.D.: Coalitions in the quantum Minority game: classical cheats and quantum bullies. Phys. Lett. A 362, 132 (2007)CrossRefADSMATHGoogle Scholar
  25. 25.
    Schmid, C., Flitney, A.P.: Experimental implementation of a four-player quantum game. arXiv:0901.0063v1 [quant-ph], (2008)
  26. 26.
    Flitney, A.P., Hollenberg, L.C.L.: Multiplayer quantum minority game with decoherence. Quantum Inf. Comput. 7, 111 (2007)MathSciNetMATHGoogle Scholar
  27. 27.
    Flitney, A.P., Abbott, D.: Quantum games with decoherence. J. Phys. A Math. Gen. 38, 449 (2005)MathSciNetCrossRefADSMATHGoogle Scholar
  28. 28.
    Khan, S., Ramzan, M., Khan, M.K.: Quantum Parrondos games under decoherence. Int. J. Theor. Phys 49, 31 (2010)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Khan, S., Ramzan, M., Khan, M.K.: Quantum Monty Hall problem under decoherence. Commun. Theor. Phys. 54, 47 (2010)CrossRefADSMATHGoogle Scholar
  30. 30.
    Gawron, P., Miszczak, J.A., Sladkowski, J.: Noise effects in quantum magic squares game. Int. J. Quant. Inf. 6, 667 (2008)CrossRefMATHGoogle Scholar
  31. 31.
    Gawron, P.: Noisy quantum Monty Hall game. Fluct. Noise Lett. 9, 9 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Chen, L.K., Ang, H., Kiang, D., Kwek, L.C., Lo, C.F.: Quantum prisoner dilemma under decoherence. Phys. Lett. A 316, 317 (2003)CrossRefADSMATHGoogle Scholar
  33. 33.
    Zhu, X., Kuang, L.M.: The influence of entanglement and decoherence on the quantum Stackelberg duopoly game. J. Phys. A Math. Theor. 40, 7729 (2007)MathSciNetCrossRefADSMATHGoogle Scholar
  34. 34.
    Ramzan, M., Nawaz, A., Toor, A.H., Khan, M.K.: The effect of quantum memory on quantum games. J. Phys. A Math. Theor. 41, 055307 (2008)MathSciNetCrossRefADSMATHGoogle Scholar
  35. 35.
    Ramzan, M.: Three-player quantum Kolkata restaurant problem under decoherence. Quantum Inf. Process. 12(1), 577–586 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  36. 36.
    Khan, S., Ramzan, M., Khan, M.K.: Decoherence effects on multiplayer cooperative quantum games. Commun. Theor. Phys. 56, 228–234 (2011)CrossRefMATHGoogle Scholar
  37. 37.
    Gawron, P., Kurzyk, D., Pawela, L.: Decoherence effects in the quantum qubit flip game using Markovian approximation. Quantum. Inf. Process. 13, 665–682 (2014)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)CrossRefADSGoogle Scholar
  39. 39.
    Aharonov, Y., Botero, A., Pospescu, S., Reznik, B., Tollaksen, J.: Revisiting Hardy’s paradox: counterfactual statements, real measurements, entanglement and weak values. Phys. Lett. A 301, 130 (2002)MathSciNetCrossRefADSMATHGoogle Scholar
  40. 40.
    Lundeen, J.S., Steinberg, A.M.: Experimental joint weak measurement on a photon pair as a probe of Hardys paradox. Phys. Rev. Lett. 102, 020404 (2009)CrossRefADSGoogle Scholar
  41. 41.
    Yokota, K., Yamamoto, T., Koashi, M., Imoto, N.: Direct observation of Hardy’s paradox by joint weak measurement with an entangled photon pair. N. J. Phys. 11, 033011 (2009)CrossRefGoogle Scholar
  42. 42.
    Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)CrossRefADSGoogle Scholar
  43. 43.
    Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978 (2009)CrossRefADSGoogle Scholar
  44. 44.
    Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)CrossRefADSGoogle Scholar
  45. 45.
    Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)CrossRefGoogle Scholar
  46. 46.
    Man, Z.X., Xia, Y.J., An, N.B.: Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements. Phys. Rev. A 86, 052322 (2012)CrossRefADSGoogle Scholar
  47. 47.
    Burger, E., Freund, J.E.: Introduction to the Theory of Games. Prentice-Hall, Englewood Cliffs (1963)Google Scholar
  48. 48.
    Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)CrossRefADSGoogle Scholar
  49. 49.
    Du, J., Li, H., Xu, X., Shi, M., Wu, J., Zhou, X., Han, R.: Experimental realization of quantum games on a quantum computer. Phys. Rev. Lett. 88, 137902 (2002)CrossRefADSGoogle Scholar
  50. 50.
    Prevedel, R., Stefanov, A., Walther, P., Zeilinger, A.: Experimental realization of a quantum game on a one-way quantum computer. N. J. Phys. 9, 205 (2007)CrossRefGoogle Scholar
  51. 51.
    Kolenderski, P., Sinha, U., Youning, L., Zhao, T., Volpini, M., Cabello, A., Laflamme, R., Jennewein, T.: Aharon–Vaidman quantum game with a Young-type photonic qutrit. Phys. Rev. A 86, 012321 (2012)CrossRefADSGoogle Scholar
  52. 52.
    Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)CrossRefADSGoogle Scholar
  53. 53.
    Katz, N., Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., OConnell, A., Wang, H., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)CrossRefADSGoogle Scholar
  54. 54.
    Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978 (2009)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of ScienceHunan University of TechnologyZhuzhouChina
  2. 2.College of Mechanical and Vehicle EngineeringHunan UniversityChangshaChina
  3. 3.College of Physics and Information ScienceHunan Normal UniversityChangshaChina

Personalised recommendations