Quantum Information Processing

, Volume 15, Issue 12, pp 5281–5298 | Cite as

Scalable digital hardware for a trapped ion quantum computer

  • Emily Mount
  • Daniel Gaultney
  • Geert Vrijsen
  • Michael Adams
  • So-Young Baek
  • Kai Hudek
  • Louis Isabella
  • Stephen Crain
  • Andre van Rynbach
  • Peter Maunz
  • Jungsang Kim
Article

Abstract

Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

Keywords

Quantum computation Qubits Trapped ions 

References

  1. 1.
    Wineland, D.J., Monroe, C., Itano, W.M., Leibfried, D., King, B.E., Meekhof, D.M.: Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Nat. Inst. Stand. Technol. 103(3), 259 (1998)CrossRefMATHGoogle Scholar
  2. 2.
    Blatt, R., Wineland, D.: Entangled states of trapped atomic ions. Nature 453(7198), 1008 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Langer, C., Ozeri, R., Jost, J.D., Chiaverini, J., DeMarco, B., Ben-Kish, A., Blakestad, R.B., Britton, J., Hume, D.B., Itano, W.M., Leibfried, D., Reichle, R., Rosenband, T., Schaetz, T., Schmidt, P.O., Wineland, D.J.: Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95(6), 4 (2005)CrossRefGoogle Scholar
  4. 4.
    Myerson, A., Szwer, D., Webster, S., Allcock, D., Curtis, M., Imreh, G., Sherman, J., Stacey, D., Steane, A., Lucas, D.: High-fidelity readout of trapped-ion qubits. Phys. Rev. Lett. 100, 200502 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Noek, R., Vrijsen, G., Gaultney, D., Mount, E., Kim, T., Maunz, P., Kim, J.: High speed, high fidelity detection of an atomic hyperfine qubit. Opt. Lett. 38(22), 4735 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Benhelm, J., Kirchmair, G., Roos, C.F., Blatt, R.: Towards fault-tolerant quantum computing with trapped ions. Nat. Phys. 4(6), 463 (2008)CrossRefGoogle Scholar
  7. 7.
    Brown, K., Wilson, A., Colombe, Y., Ospelkaus, C., Meier, A., Knill, E., Leibfried, D., Wineland, D.: Single-qubit-gate error below \(10^{-4}\) in a trapped ion. Phys. Rev. A 84, 030303 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Ballance, C., Harty, T., Linke, N., Lucas, D.: High-fidelity two-qubit quantum logic gates using trapped calcium-43 ions. arXiv preprint arXiv:1406.5473 (2014)
  9. 9.
    Merrill, J.T., Volin, C., Landgren, D., Amini, J.M., Wright, K., Doret, S.C., Pai, C.S., Hayden, H., Killian, T., Faircloth, D., Brown, K.R., Harter, A.W., Slusher, R.E.: Demonstration of integrated microscale optics in surface-electrode ion traps. New J. Phys. 13, 15 (2011)Google Scholar
  10. 10.
    Moehring, D.L., Highstrete, C., Stick, D., Fortier, K.M., Haltli, R., Tigges, C., Blain, M.G.: Design, fabrication and experimental demonstration of junction surface ion traps. New J. Phys. 13, 075018 (2011)Google Scholar
  11. 11.
    Monroe, C., Kim, J.: Scaling the ion trap quantum processor. Science 339(6124), 1164 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Monroe, C., Raussendorf, R., Ruthven, A., Brown, K., Maunz, P., Duan, L.M., Kim, J.: Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89(2), 022317 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Lee, M.W., Jarratt, M.C., Marciniak, C., Biercuk, M.J.: Frequency stabilization of a 369 nm diode laser by nonlinear spectroscopy of ytterbium ions in a discharge. Opt. Exp. 22(6), 7210 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Drever, R., Hall, J., Kowalski, F., Hough, J., Ford, G., Munley, A., Ward, H.: Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31(2), 97 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    Hayes, D., Matsukevich, D.N., Maunz, P., Hucul, D., Quraishi, Q., Olmschenk, S., Campbell, W., Mizrahi, J., Senko, C., Monroe, C.: Entanglement of atomic qubits using an optical frequency comb. Phys. Rev. Lett. 104, 140501 (2010)Google Scholar
  16. 16.
    Islam, R., Campbell, W., Choi, T., Clark, S., Conover, C., Debnath, S., Edwards, E., Fields, B., Hayes, D., Hucul, D., et al.: Beat note stabilization of mode-locked lasers for quantum information processing. Opt. Lett. 39(11), 3238 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Mount, E., Baek, S.Y., Blain, M., Stick, D., Gaultney, D., Crain, S., Noek, R., Kim, T., Maunz, P., Kim, J.: Single qubit manipulation in a microfabricated surface electrode ion trap. New J. Phys. 15(9), 093018 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Hayes, D.L.: Remote and local entanglement of ions with photons and phonons. Ph.D. thesis, University of Maryland Department of Physics and National Institute of Standards and Technology (2012)Google Scholar
  19. 19.
    Turchette, Q.A., Kielpinski, D., King, B.E., Leibfried, D., Meekhof, D.M., Myatt, C.J., Rowe, M.A., Sackett, C.A., Wood, C.S., Itano, W.M., Monroe, C., Wineland, D.J.: Heating of trapped ions from the quantum ground state. Phys. Rev. A 61(6), 8 (2000)CrossRefGoogle Scholar
  20. 20.
    Maunz, P., Moehring, D.L., Olmschenk, S., Younge, K.C., Matsukevich, D.N., Monroe, C.: Quantum interference of photon pairs from two remote trapped atomic ions. Nat. Phys. 3(8), 538 (2007)CrossRefGoogle Scholar
  21. 21.
    Blakestad, R., Ospelkaus, C., VanDevender, A., Amini, J., Britton, J., Leibfried, D., Wineland, D.: High-fidelity transport of trapped-ion qubits through an X-junction trap array. Phys. Rev. Lett. 102(15), 153002 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Bowler, R., Gaebler, J., Lin, Y., Tan, T., Hanneke, D., Jost, J., Home, J., Leibfried, D., Wineland, D.: Coherent diabatic ion transport and separation in a multizone trap array. Phys. Rev. Lett. 109(8), 080502 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Shu, G., Vittorini, G., Buikema, A., Nichols, C., Volin, C., Stick, D., Brown, K.R.: Heating rates and ion-motion control in a Y-junction surface-electrode trap. Phys. Rev. A 89(6), 062308 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    National Instruments PXI-67XX. Datasheet (2009)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Emily Mount
    • 1
  • Daniel Gaultney
    • 1
  • Geert Vrijsen
    • 1
  • Michael Adams
    • 1
  • So-Young Baek
    • 1
  • Kai Hudek
    • 1
  • Louis Isabella
    • 1
  • Stephen Crain
    • 1
  • Andre van Rynbach
    • 1
  • Peter Maunz
    • 2
  • Jungsang Kim
    • 1
  1. 1.Electrical and Computer Engineering DepartmentDuke UniversityDurhamUSA
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations