Advertisement

Quantum Information Processing

, Volume 14, Issue 11, pp 4089–4102 | Cite as

Quantum phase transition in dimerised spin-1/2 chains

  • Aparajita Das
  • Sreeparna Bhadra
  • Sonali SahaEmail author
Article

Abstract

Quantum phase transition in dimerised antiferromagnetic Heisenberg spin chain has been studied. A staircase structure in the variation of concurrence within strongly coupled pairs with that of external magnetic field has been observed indicating multiple critical (or critical like) points. Emergence of entanglement due to external magnetic field or magnetic entanglement is observed for weakly coupled spin pairs too in the same dimer chain. Though closed dimerised isotropic XXX Heisenberg chains with different dimer strengths were mainly explored, analogous studies on open chains as well as closed anisotropic (XX interaction) chains with tilted external magnetic field have also been studied.

Keywords

Quantum phase transition Concurrence Dimerised Heisenberg chain 

Notes

Acknowledgments

AD and SB acknowledge the support offered by Acharya Prafulla Chandra College and Sarojini Naidu College for Women for carrying out this work, part of which was done as part of their project work at Master’s level under supervision of SS. The authors acknowledge some helpful discussions with Jacques H.H. Perk regarding the earlier studies on phase transitions in alternating chains and finite size effects of the spin chains, during the preparation of the final version of this manuscript, in which authors were made aware of some old references too. The authors also like to acknowledge Edward Fel’dman for drawing their attention to some recent works. The anonymous reviewers are also being acknowledged for their useful suggestions and for pointing out some useful references. The work of SS was supported by the UGC MRP Grant (Sanction No. F. PSW-164/13-14). SS further acknowledges the technical supports she got from Dr. Sankhasubhra Nag, SNCW, Kolkata.

References

  1. 1.
    Sachdev, S.: Quantum Phase Transitions. Cambridge UniversityPress, Cambridge (1999)Google Scholar
  2. 2.
    Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)CrossRefADSGoogle Scholar
  3. 3.
    Zhou, L., Song, H.S., Guo, Y.Q., Li, C.: Enhanced thermal entanglement in an anisotropic Heisenberg XYZ chain. Phy. Rev. A 68, 024301 (2003)CrossRefADSGoogle Scholar
  4. 4.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)MathSciNetCrossRefADSzbMATHGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)MathSciNetCrossRefADSzbMATHGoogle Scholar
  6. 6.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)CrossRefADSGoogle Scholar
  9. 9.
    Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)CrossRefADSGoogle Scholar
  10. 10.
    Burkard, G., Loss, D., DiVincenzo, D.P.: Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070–2078 (1999)CrossRefADSGoogle Scholar
  11. 11.
    Imamoglu, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999)CrossRefADSGoogle Scholar
  12. 12.
    Nielsen, M.: Quantum information theory. Ph.D. thesis, University of New Mexico (1998)Google Scholar
  13. 13.
    Wang, X.: Entanglement in the quantum Heisenberg XY model. Phys. Rev. A 64, 012313 (2001)CrossRefADSGoogle Scholar
  14. 14.
    Kamta, G.L., Starace, A.F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. Phys. Rev. Lett. 88, 107901 (2002)CrossRefADSGoogle Scholar
  15. 15.
    Sen, A., Sen, U., Lewenstein, M.: Dynamical phase transitions and temperature-induced quantum correlations in an infinite spin chain. Phys. Rev. A 72, 052319 (2005)CrossRefADSGoogle Scholar
  16. 16.
    Sun, Y., Chen, Y., Chen, H.: Thermal entanglement in the two-qubit Heisenberg XY model under a non uniform external magnetic field. Phys. Rev. A 68, 044301 (2003)CrossRefADSGoogle Scholar
  17. 17.
    Terzis, A.F., Paspalakis, E.: Entanglement in a two-qubit Ising model under a site-dependent external magnetic field. Phys. Lett. A 333, 438–445 (2004)CrossRefADSzbMATHGoogle Scholar
  18. 18.
    Gong, S.S., Su, G.: Thermal entanglement in one-dimensional Heisenberg quantum spin chains under magnetic fields. Phys. Rev. A 80, 012323 (2009)CrossRefADSGoogle Scholar
  19. 19.
    Plekhanov, E., Avella, A., Mancini, F.: Thermal entanglement in one- dimensional Heisenberg quantum spin chains under magnetic fields. Phys. B 403, 1282–1283 (2008)CrossRefADSGoogle Scholar
  20. 20.
    Karthik, J., Sharma, A., Lakshminarayan, A.: Thermal entanglement in one-dimensional Heisenberg quantum spin chains under magnetic fields. Phys. Rev. A 75, 022304 (2007)CrossRefADSGoogle Scholar
  21. 21.
    Hao, X., Zhu, S.: Entanglement in a quantum mixed-spin chain. Phys. Lett. A 366, 206–210 (2007)MathSciNetCrossRefADSzbMATHGoogle Scholar
  22. 22.
    Prosen, T., Pizorn, I.: Operator space entanglement entropy in a transverse Ising chain. Phys. Rev. A 76, 032316 (2007)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Bose, S.: Quantum communication through spin chain dynamics: an introductory overview. Contemp. Phys. 48, 13–30 (2007)CrossRefADSGoogle Scholar
  24. 24.
    Yang, S., Bayat, A., Bose, S.: Entanglement-enhanced information transfer through strongly correlated systems and its application to optical lattices. Phys. Rev. A 84, 020302(R) (2011)CrossRefADSGoogle Scholar
  25. 25.
    Rafiee, M., Mokhtari, H.: Long-distance entanglement generation by local rotational protocols in spin chains. Phys. Rev. 87, 022304 (2013)CrossRefADSGoogle Scholar
  26. 26.
    Kontorovich, V.M., Tsukernik, V.M.: Magnetic properties of a spin array with two sublattices. Sov. Phys. JETP 26, 687–691 (1968)ADSGoogle Scholar
  27. 27.
    Perk, J., Capel, H., Zuilhof, M., Siskens, T.J.: Magnetic properties of a spin array with two sublattices. Phys. A 81A, 319–348 (1975)CrossRefADSGoogle Scholar
  28. 28.
    Diederix, K., Groen, J.P., Poulis, N.: A study of the high field phase transition in Cu(NO3)2.2(1/2)H2O. Physica 86–88B, 1151–1152 (1977)Google Scholar
  29. 29.
    Diederix, K.M., Groen, J.P., Henkens, L.S.J.M., Klaassen, T., Poulis, N.J.: An experimental study on the magnetic properties ground-state system in Cu(NO3)2.2-1/2H2O of the singlet. Physica 93B, 99–113 (1978)Google Scholar
  30. 30.
    Diederix, K.M., Groen, J.P., Henkens, L.S.J.M., Klaassen, T., Poulis, N.J.: An experimental study on the magnetic properties of the singlet ground-state system in CU(NO3)2.2-1/2H2O. Physica 94B, 9–26 (1978)Google Scholar
  31. 31.
    Diederix, K.M., Blote, H.W.J., Groen, J.P., Klaassen, T.O., Poulis, N.: An experimental study on the magnetic properties of the singlet ground-state system in CU(NO3)2.2-1/2H2O. Phys. Rev. B 19, 420–431 (1979)CrossRefADSGoogle Scholar
  32. 32.
    Bonner, J.C., Fisher, M.E.: Linear magnetic chains with anisotroyic coupling. Phys. Rev. 135(3A), A640–A658 (1964)CrossRefADSGoogle Scholar
  33. 33.
    Hida, K.: Crossover between the Haldane-gap phase and the dimer phase in the spin-1/2 alternating Heisenberg chain. Phys. Rev. B 45, 2207–2212 (1992)MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Feldman, E.B., Rudavets, M.G.: Crossover between the Haldane-gap phase and the dimer phase in the spin-1/2 alternating Heisenberg chain. JETP Lett. 81, 47–52 (2005)CrossRefADSGoogle Scholar
  35. 35.
    Kuznetsova, E.I., Feldman, B.: Crossover between the Haldane-gap phase and the dimer phase in the spin-1/2 alternating Heisenberg chain. J. Exp. Theor. Phys. 102, 882–893 (2006)CrossRefADSGoogle Scholar
  36. 36.
    Chitra, R., Pati, S., Krishnamurthy, H.R., Sen, D., Ramasesha, S.: Crossover between the Haldane-gap phase and the dimer phase in the spin-1/2 alternating Heisenberg chain. Phy. Rev. B 52, 6581–6587 (1995)CrossRefADSGoogle Scholar
  37. 37.
    Fledderjohann, A., Gros, C.: Spin dynamics of dimerized Heisenberg chains. Europhys. Lett. 37, 189–194 (1997)CrossRefADSGoogle Scholar
  38. 38.
    Doronin, S.I., Pyrkov, A.N., Feldman, B.: Entanglement in alternating open chains of nuclear spins s = 1/2 with the XY Hamiltonian. JETP Lett. 85, 519–523 (2007)CrossRefGoogle Scholar
  39. 39.
    Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Harcourt Asia Pvt. Ltd., Singapore (2001)Google Scholar
  40. 40.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)CrossRefADSGoogle Scholar
  41. 41.
    Cheng, W., Shan, C., Sheng, Y., Gong, L., Zhao, S.: Quantum correlation approach to criticality in the XX spin chain with multiple interaction. Phys. B 407, 3671–3675 (2012)CrossRefADSGoogle Scholar
  42. 42.
    Cheng, W.W., Du, Z.Z., Gong, L.Y., Zhao, S.M., Liu, J.M.: Signature of topological quantum phase transitions via Wigner-Yanase skew information. EPL 108, 46003 (2014)CrossRefADSGoogle Scholar
  43. 43.
    Cheng, W.W., Li, J.X., Shan, C.J., Gong, L.Y., Zhao, S.M.: Criticality, factorization and Wigner-Yanase skew information in quantum spin chains. Quantum Inf. Process. 14, 2535–2549 (2015)CrossRefADSGoogle Scholar
  44. 44.
    Shan, C.J., Cheng, W.W., Liu, J.B., Cheng, Y.S.: Scaling of geometric quantum discord close to a topological phase transition. Sci. Rep. 4, 4473 (2014)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Acharya Prafulla Chandra CollegeNew BarrackporeIndia
  2. 2.Sarojini Naidu College for WomenKolkataIndia

Personalised recommendations