Advertisement

Quantum Information Processing

, Volume 14, Issue 11, pp 4147–4162 | Cite as

Environment-assisted entanglement restoration and improvement of the fidelity for quantum teleportation

  • Xian-Mei Xu
  • Liu-Yong Cheng
  • A-Peng Liu
  • Shi-Lei Su
  • Hong-Fu Wang
  • Shou ZhangEmail author
Article

Abstract

Three environment-assisted schemes are proposed to suppress the amplitude damping decoherence for entanglement distribution via weak measurement reversal. Based on the measurement of environment and appropriate weak measurement reversal operations, the initial entangled state can be recovered between two separated participants with high success probability and fidelity. In some specific cases, the restored optimal concurrence could reach up to 1 without requirement of the reversing measurement. Moreover, we concretely show that the proposed environment-assisted entanglement restoration can be applied to quantum teleportation to significantly improve the fidelity of the teleported state.

Keywords

Environmental measurement Weak measurement reversal   Entanglement restoration 

References

  1. 1.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)MathSciNetCrossRefADSzbMATHGoogle Scholar
  2. 2.
    Espoukeh, P., Pedram, P.: Quantum teleportation through noisy channels with multi-qubit GHZ states. Quantum Inf. Process. 13, 1789–1811 (2014)MathSciNetCrossRefADSzbMATHGoogle Scholar
  3. 3.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)MathSciNetCrossRefADSzbMATHGoogle Scholar
  4. 4.
    Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up. Proc. R. Soc. Lond. A 459, 2011–2032 (2003)MathSciNetCrossRefADSzbMATHGoogle Scholar
  5. 5.
    Orús, R., Latorre, J.I.: Universality of entanglement and quantum-computation complexity. Phys. Rev. A 69, 052308 (2004)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)CrossRefADSGoogle Scholar
  7. 7.
    Chang, Y., Zhang, S.B., Yan, L.L., Li, J.: Deterministic secure quantum communication and authentication protocol based on three-particle W state and quantum one-time pad. Chin. Sci. Bull. 59, 2835 (2014)CrossRefGoogle Scholar
  8. 8.
    Chang, Y., Xu, C.X., Zhang, S.B., Yan, L.L.: Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull. 59, 2541 (2014)CrossRefGoogle Scholar
  9. 9.
    Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57, 1696–1702 (2014)CrossRefADSGoogle Scholar
  10. 10.
    Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci. China Phys. Mech. Astron. 57, 1238–1243 (2014)CrossRefADSGoogle Scholar
  11. 11.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)CrossRefADSGoogle Scholar
  12. 12.
    Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Preparation of multipartite entangled states used for quantum information networks. Sci. China Phys. Mech. Astron. 57, 1210–1217 (2014)CrossRefADSGoogle Scholar
  13. 13.
    Schukla, C., Pathak, A.: Orthogonal-state-based deterministic secure quantum communication without actual transmission of the message qubits. Quantum Inf. Process. 13, 2099–2113 (2014)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quantum Inf. Process. 14, 2195–2210 (2015)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Messamah, J., Schroeck, F.E., Jr, Hachemane, M., Smida, A., Hamici, A.H.: Quantum mechanics on phase space and teleportation. Quantum Inf. Process. 14, 1035–1054 (2015)Google Scholar
  16. 16.
    Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60, 141–141 (2015)CrossRefGoogle Scholar
  17. 17.
    Plama, G.M., Suominen, K.-A., Ekert, A.K.: Quantum computers and dissipation. Proc. R. Soc. Lond. A 452, 567–584 (1996)CrossRefADSGoogle Scholar
  18. 18.
    Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)CrossRefADSGoogle Scholar
  19. 19.
    Kwiat, P.G., Berglund, A.J., Alterpeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000)CrossRefADSGoogle Scholar
  20. 20.
    Wang, H.-F., Zhang, S., Zhu, A.-D., Yi, X.X., Yeon, K.-H.: Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors. Opt. Express 19, 25433–25440 (2011)CrossRefADSGoogle Scholar
  21. 21.
    Liu, A.-P., Cheng, L.-Y., Chen, L., Su, S.-L., Wang, H.-F., Zhang, S.: Quantum information processing in decoherence-free subspace with nitrogen-vacancy centers coupled to a whispering-gallery mode microresonator. Opt. Commun. 313, 180–185 (2014)CrossRefADSGoogle Scholar
  22. 22.
    Facchi, P., Lindar, D.A., Pascazio, S.: Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004)CrossRefADSGoogle Scholar
  23. 23.
    Wang, S.-C., Li, Y., Wang, X.-B., Kwek, L.C.: Operator quantum Zeno effect: protecting quantum information with noisy two-qubit interactions. Phys. Rev. Lett. 110, 100505 (2013)CrossRefADSGoogle Scholar
  24. 24.
    Gregoratti, M., Werner, R.F.: Quantum lost and found. J. Mod. Opt. 50, 915–933 (2003)MathSciNetCrossRefADSzbMATHGoogle Scholar
  25. 25.
    Trendelkamp-Schroer, B., Helm, J., Strunz, W.T.: Environment-assisted error correction of single-qubit phase damping. Phys. Rev. A 84, 062314 (2011)CrossRefADSGoogle Scholar
  26. 26.
    Koashi, M., Ueda, M.: Reversing measurement and probabilistic quantum error correction. Phys. Rev. Lett. 82, 2598–2601 (1999)CrossRefADSGoogle Scholar
  27. 27.
    Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)CrossRefADSGoogle Scholar
  28. 28.
    Kim, Y.-S., Cho, Y.-W., Ra, Y.-S., Kim, Y.-H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009)CrossRefADSGoogle Scholar
  29. 29.
    Sun, Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)CrossRefADSGoogle Scholar
  30. 30.
    Ashhab, S., Nori, F.: Control-free control: manipulating a quantum system using only a limited set of measurements. Phys. Rev. A 82, 062103 (2010)CrossRefADSGoogle Scholar
  31. 31.
    Lee, J.-C., Jeong, Y.-C., Kim, Y.-S., Kim, Y.-H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309–16316 (2011)CrossRefADSGoogle Scholar
  32. 32.
    Li, Y.-L., Xiao, X.: Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal. Quantum Inf. Process. 12, 3067–3077 (2013)MathSciNetCrossRefADSzbMATHGoogle Scholar
  33. 33.
    Wang, Y.-K., Ma, T., Fan, H., Fei, S.-M., Wang, Z.-X.: Super-quantum correlation and geometry for Bell-diagonal states with weak measurements. Quantum Inf. Process. 13, 283–297 (2014)CrossRefzbMATHGoogle Scholar
  34. 34.
    Xiao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83, 054301 (2011)CrossRefADSGoogle Scholar
  35. 35.
    Kim, Y.-S., Lee, J.-C., Kwon, O., Kim, Y.-H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)CrossRefGoogle Scholar
  36. 36.
    Yao, C., Ma, Z.-H., Chen, Z.-H., Serafini, A.: Robust tripartite-to-bipartite entanglement localization by weak measurements and reversal. Phys. Rev. A 86, 022312 (2012)CrossRefADSGoogle Scholar
  37. 37.
    Song, W., Yang, M., Cao, Z.-L.: Purifying entanglement of noisy two-qubit states via entanglement swapping. Phys. Rev. A 89, 014303 (2014)CrossRefADSGoogle Scholar
  38. 38.
    Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377, 3209–3215 (2013)MathSciNetCrossRefADSzbMATHGoogle Scholar
  39. 39.
    Man, Z.-X., Xia, Y.-J., An, N.B.: Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and post measurements. Phys. Rev. A 86, 052322 (2012)CrossRefADSGoogle Scholar
  40. 40.
    Man, Z.-X., Xia, Y.-J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)CrossRefADSGoogle Scholar
  41. 41.
    Man, Z.-X., Xia, Y.-J., An, N.B.: On-demand control of coherence transfer between interacting qubits surrounded by a dissipative environment. Phys. Rev. A 89, 013852 (2014)CrossRefADSGoogle Scholar
  42. 42.
    Man, Z.-X., An, N.B., Xia, Y.-J., Kim, J.: Controllable entanglement transfer via two parallel spin chains. Phys. Lett. A 378, 2063–2069 (2014)CrossRefADSGoogle Scholar
  43. 43.
    Man, Z.-X., An, N.B., Xia, Y.-J.: Improved quantum state transfer via quantum partially collapsing measurements. Ann. Phys. 349, 209–219 (2014)MathSciNetCrossRefADSGoogle Scholar
  44. 44.
    Man, Z.-X., An, N.B., Xia, Y.-J., Kim, J.: Universal scheme for finite-probability perfect transfer of arbitrary multispin states through spin chains. Ann. Phys. 351, 739–750 (2014)MathSciNetCrossRefADSGoogle Scholar
  45. 45.
    Wang, K., Zhao, X., Yu, T.: Environment-assisted quantum state restoration via weak measurements. Phys. Rev. A 89, 042320 (2014)CrossRefADSGoogle Scholar
  46. 46.
    Katz, N., Neeley, M., Ansmannn, M., Bialczak, R.C., Hofheinz, M., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)CrossRefADSGoogle Scholar
  47. 47.
    Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)CrossRefADSGoogle Scholar
  48. 48.
    Sun, Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)CrossRefADSGoogle Scholar
  49. 49.
    Tan, Q.-Y., Wang, L., Li, J.-X., Tang, J.-W., Wang, X.-W.: Amplitude-damping decoherence suppression of two-qubit entangled states by weak measurements. Int. J. Theor. Phys. 52, 612–619 (2013)CrossRefzbMATHGoogle Scholar
  50. 50.
    Lim, H.-T., Lee, J.-C., Hong, K.-H., Kim, Y.-H.: Avoiding entanglement sudden death using single-qubit quantum measurement reversal. Opt. Express 22, 19055–19068 (2014)CrossRefADSGoogle Scholar
  51. 51.
    Weisskopf, V.F., Wigner, E.P.: Calculation of the natural brightness of spectral lines on the basis of Dirac’s theory. Z. Phys. 63, 54–73 (1930)CrossRefADSzbMATHGoogle Scholar
  52. 52.
    Zhou, L., Sheng, Y.B.: Concurrence measurement for the two-qubit optical and atomic states. Entropy 17, 4293–4322 (2015)CrossRefADSGoogle Scholar
  53. 53.
    Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L., Mintert, F., Buchleitner, A.: Experimental determination of entanglement with a single measurement. Nature 440, 1022–1024 (2006)CrossRefADSGoogle Scholar
  54. 54.
    Zhou, L., Sheng, Y.B.: Detection of nonlocal atomic entanglement assisted by single photons. Phys. Rev. A 90, 024301 (2014)CrossRefADSGoogle Scholar
  55. 55.
    Sheng, Y.B., Guo, R., Pan, J., Zhou, L., Wang, X.F.: Two-step measurement of the concurrence for hyperentangled state. Quantum Inf. Process. 14, 963–978 (2015)MathSciNetCrossRefADSzbMATHGoogle Scholar
  56. 56.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)MathSciNetCrossRefADSGoogle Scholar
  57. 57.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)CrossRefADSGoogle Scholar
  58. 58.
    Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)MathSciNetCrossRefADSzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xian-Mei Xu
    • 1
  • Liu-Yong Cheng
    • 2
  • A-Peng Liu
    • 1
  • Shi-Lei Su
    • 3
  • Hong-Fu Wang
    • 1
  • Shou Zhang
    • 1
    Email author
  1. 1.Department of Physics, College of ScienceYanbian UniversityYanjiChina
  2. 2.School of Physics and Information EngineeringShanxi Normal UniversityLinfenChina
  3. 3.Department of PhysicsHarbin Institute of TechnologyHarbinChina

Personalised recommendations