Quantum Information Processing

, Volume 14, Issue 10, pp 3773–3784 | Cite as

A new scheme on improving the performance of the quantum key distribution with two-intensity weak coherent light

  • Feng Zhu
  • Xing-Yu Zhou
  • Ai-Ping Liu
  • Qin WangEmail author


In this paper, we propose a new scheme on implementing the quantum key distribution with two-intensity weak coherent light and compare its performance with other existing methods. Through numerical simulations, we demonstrate that our new scheme can exceed almost all other existing decoy-state methods, e.g., the standard three-intensity decoy-state method and the usual passive decoy-state method, both in the transmission distance and in the final key generation rate, approaching very closely to the ideal case of using an infinite number of decoy states. Besides, we also consider the finite-size key effect. We demonstrate that under current experimental conditions, even when taking statistical fluctuation into account, a quite high key generation rate can still be obtained at very long transmission distance by applying our new scheme.


Quantum key distribution Parametric down-conversion Quantum communication 



We gratefully acknowledge the financial support from the National Natural Science Foundation of China through Grants Nos. 11274178, 11311140250, and 61475197, the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions through Grants No. YX002001, and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications through Grant Nos. NY212011 and NY214142.


  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems and signal processing, pp. 175–179. IEEE, New York (1984)Google Scholar
  2. 2.
    Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)CrossRefADSGoogle Scholar
  3. 3.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)CrossRefADSGoogle Scholar
  4. 4.
    Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)CrossRefADSGoogle Scholar
  6. 6.
    Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)CrossRefADSGoogle Scholar
  7. 7.
    Lütkenhaus, N., Jahma, M.: Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys. 4, 44.1 (2002)CrossRefGoogle Scholar
  8. 8.
    Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)CrossRefADSGoogle Scholar
  9. 9.
    Wang, X.B.: Decoy-state protocol for quantum cryptography with four different intensities of coherent light. Phys. Rev. A. 72, 012322 (2005)CrossRefADSGoogle Scholar
  10. 10.
    Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)CrossRefADSGoogle Scholar
  11. 11.
    Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)CrossRefADSGoogle Scholar
  12. 12.
    Ma, X.F., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)CrossRefADSGoogle Scholar
  13. 13.
    Wang, Q., Wang, X.B., Guo, G.C.: Practical decoy state for quantum key distribution. Phys. Rev. A 75, 012312 (2007)CrossRefADSGoogle Scholar
  14. 14.
    Scarani, V., Acín, A., Ribordy, G., Gisin, N.: Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. Lett. 92, 057901 (2004)CrossRefADSGoogle Scholar
  15. 15.
    Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)CrossRefADSGoogle Scholar
  16. 16.
    Branciard, C., Cavalcanti, E.G., Walborn, S.P., Scarani, V., Wiseman, H.M.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301 (2012)CrossRefADSGoogle Scholar
  17. 17.
    Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)CrossRefADSGoogle Scholar
  18. 18.
    Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)CrossRefADSGoogle Scholar
  19. 19.
    Tamaki, K., Lo, H.K., Fung, C.H.F., Qi, B.: Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85, 042307 (2012)CrossRefADSGoogle Scholar
  20. 20.
    Wang, Q., Wang, X.B.: Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded signal-photon sources. Phys. Rev. A 88, 052332 (2013)CrossRefADSGoogle Scholar
  21. 21.
    Zhao, Y., Qi, B., Ma, X.F., Lo, H.K., Qian, L.: Experimental quantum key distribution with decoy states. Phys. Rev. Lett. 96, 070502 (2006)CrossRefADSGoogle Scholar
  22. 22.
    Curty, M., Ma, X., Qi, B., Moroder, T.: Passive decoy-state quantum key distribution with practical light sources. Phys. Rev. A 81, 022310 (2010)CrossRefADSGoogle Scholar
  23. 23.
    Mauerer, W., Sliberhorn, C.: Quantum key distribution with passive decoy state selection. Phys. Rev. A 75, 050305 (2007)CrossRefADSGoogle Scholar
  24. 24.
    Zhou, Y.H., Yu, Z.W., Wang, X.B.: Tightened estimation can improve the key rate of measure-device-independent quantum key distribution by more than 100 %. Phys. Rev. A 89, 052325 (2014)CrossRefADSGoogle Scholar
  25. 25.
    Zhou, C., Bao, W.S., Chen, W., Li, H.W., Yin, Z.Q., Wang, Y., Han, Z.F.: Phase-encoded measurement-device-independent quantum key distribution with practical spontaneous-parametric-down-conversion sources. Phys. Rev. A 88, 052333 (2013)CrossRefADSGoogle Scholar
  26. 26.
    Tang, Y.L., Yin, H.L., Chen, S.J., Liu, Y., Zhang, W.J., Jiang, X., Zhang, L., Wang, J., You, L.X., Guan, J.Y., Yang, D.X., Wang, Z., Liang, H., Zhang, Z., Zhou, N., Ma, X.F., Chen, T.Y., Zhang, Q., Pan, J.W.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113, 190501 (2014)CrossRefADSGoogle Scholar
  27. 27.
    Fung, C.H.F., Qi, B., Tamaki, K., Lo, H.K.: Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A 75, 032314 (2007)CrossRefADSGoogle Scholar
  28. 28.
    Qi, B., Fung, C.H.F., Lo, H.K., Ma, X.F.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73 (2007)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4, 686 (2010)CrossRefADSGoogle Scholar
  30. 30.
    Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107, 110501 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Feng Zhu
    • 1
    • 2
  • Xing-Yu Zhou
    • 1
    • 2
  • Ai-Ping Liu
    • 1
    • 2
  • Qin Wang
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute of Signal Processing TransmissionNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and TelecommunicationsMinistry of EducationNanjingChina
  3. 3.Key Laboratory of Quantum InformationUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations