Advertisement

Quantum Information Processing

, Volume 14, Issue 10, pp 3595–3611 | Cite as

Quantum walks on a circle with optomechanical systems

  • Jalil Khatibi Moqadam
  • Renato Portugal
  • Marcos Cesar de Oliveira
Article

Abstract

We propose an implementation of a quantum walk on a circle in an optomechanical system by encoding the walker on the phase space of a radiation field and the coin on a two-level state of a mechanical resonator. The dynamics of the system is obtained by applying Suzuki–Trotter decomposition. We numerically show that the system displays typical behaviors of quantum walks, namely the probability distribution evolves ballistically and the standard deviation of the phase distribution is linearly proportional to the number of steps. We also analyze the effects of decoherence by using the phase-damping channel on the coin space, showing the possibility to implement the quantum walk with present-day technology.

Keywords

Optomechanical and electromechanical resonators Quantum walk Simulation 

Notes

Acknowledgments

JKM acknowledges financial supports from CNPq, Grants PCI-DB 302866/2014-0 and PDJ 165941/2014-6. RP acknowledges financial support from CNPq and FAPERJ. MCO acknowledges support by FAPESP and CNPq through the National Institute for Science and Technology of Quantum Information (INCT-IQ) and the Research Center in Optics and Photonics (CePOF).

References

  1. 1.
    Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687–1690 (1993)CrossRefADSGoogle Scholar
  2. 2.
    Vieira, R., Amorim, E.P.M., Rigolin, G.: Dynamically disordered quantum walk as a maximal entanglement generator. Phys. Rev. Lett. 111(18), 180503 (2013)CrossRefADSGoogle Scholar
  3. 3.
    Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the thirty-fifth ACM symposium on Theory of computing—STOC ’03, p. 59 (2003)Google Scholar
  4. 4.
    Childs, A., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70(2), 1–11 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Portugal, R.: Quantum walks and search algorithms. Springer, Berlin (2013)CrossRefzbMATHGoogle Scholar
  6. 6.
    Manouchehri, K., Wang, J.: Physical implementation of quantum walks. Springer, Berlin, Heidelberg (2014)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bouwmeester, D., Marzoli, I., Karman, G., Schleich, W., Woerdman, J.: Optical galton board. Phys. Rev. A 61(1), 013410 (1999)CrossRefADSGoogle Scholar
  8. 8.
    Souto Ribeiro, P., Walborn, S., Raitz, C., Davidovich, L., Zagury, N.: Quantum random walks and wave-packet reshaping at thesingle-photon level. Phys. Rev. A 78(1), 012326 (2008)CrossRefADSGoogle Scholar
  9. 9.
    Broome, M.A., Fedrizzi, A., Lanyon, B.P., Kassal, I., Aspuru-Guzik, A., White, A.G.: Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104(15), 153602 (2010)CrossRefADSGoogle Scholar
  10. 10.
    Zhang, P., Liu, B.H., Liu, R.F., Li, H.R., Li, F.L., Guo, G.C.: Implementation of one-dimensional quantum walks on spin-orbital angular momentum space of photons. Phys. Rev. A 81(5), 052322 (2010)CrossRefADSGoogle Scholar
  11. 11.
    Peruzzo, A., Lobino, M., Matthews, J.C.F., Matsuda, N., Politi, A., Poulios, K., Zhou, X.Q., Lahini, Y., Ismail, N., Wörhoff, K., Bromberg, Y., Silberberg, Y., Thompson, M.G., OBrien, J.L.: Quantum walks of correlated photons. Science 329(5998), 1500–1503 (2010). (New York, NY)CrossRefADSGoogle Scholar
  12. 12.
    Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104(5), 050502 (2010)CrossRefADSGoogle Scholar
  13. 13.
    Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Jex, I., Silberhorn, C.: Decoherence and disorder in quantum walks: from ballistic spread to localization. Phys. Rev. Lett. 106(18), 180403 (2011)CrossRefADSGoogle Scholar
  14. 14.
    Goyal, S.K., Roux, F.S., Forbes, A., Konrad, T.: Implementing quantum walks using orbital angular momentum of classical light. Phys. Rev. Lett. 110(26), 263602 (2013)CrossRefADSGoogle Scholar
  15. 15.
    Xue, P., Sanders, B., Leibfried, D.: Quantum walk on a line for a trapped ion. Phys. Rev. Lett. 103(18), 183602 (2009)CrossRefADSGoogle Scholar
  16. 16.
    Karski, M., Förster, L., Choi, J.M., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325(5937), 174–177 (2009). (New York, NY)CrossRefADSGoogle Scholar
  17. 17.
    Zähringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104(10), 100503 (2010)CrossRefGoogle Scholar
  18. 18.
    Schmitz, H., Matjeschk, R., Schneider, C., Glueckert, J., Enderlein, M., Huber, T., Schaetz, T.: Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103(9), 090504 (2009)CrossRefADSGoogle Scholar
  19. 19.
    Dür, W., Raussendorf, R., Kendon, V., Briegel, H.J.: Quantum walks in optical lattices. Phys. Rev. A 66(5), 052319 (2002)CrossRefADSGoogle Scholar
  20. 20.
    Travaglione, B., Milburn, G.: Implementing the quantum random walk. Phys. Rev. A 65(3), 032310 (2002)CrossRefADSGoogle Scholar
  21. 21.
    Sanders, B.C., Bartlett, S.D., Tregenna, B., Knight, P.L.: Quantum quincunx in cavity quantum electrodynamics. Phys. Rev. A 67(4), 042305 (2003)CrossRefADSGoogle Scholar
  22. 22.
    Xue, P., Sanders, B.C.: Quantum quincunx for walk on circles in phase space with indirect coin flip. New J. Phys. 10(5), 053025 (2008)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Xue, P., Sanders, B., Blais, A., Lalumière, K.: Quantum walks on circles in phase space via superconducting circuit quantum electrodynamics. Phys. Rev. A 78(4), 042334 (2008)CrossRefADSGoogle Scholar
  24. 24.
    Hardal, A.Ü., Xue, P., Shikano, Y., Müstecaplıoğlu, Ö.E., Sanders, B.C.: Discrete-time quantum walk with nitrogen-vacancy centers in diamond coupled to a superconducting flux qubit. Phys. Rev. A 88(2), 022303 (2013)CrossRefADSGoogle Scholar
  25. 25.
    Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. arXiv:1303.0733 (2013)
  26. 26.
    Poot, M., van der Zant, H.S.: Mechanical systems in the quantum regime. Phys. Rep. 511(5), 273–335 (2012)CrossRefADSGoogle Scholar
  27. 27.
    O’Connell, A.D., Hofheinz, M., Ansmann, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M., et al.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464(7289), 697–703 (2010)CrossRefADSGoogle Scholar
  28. 28.
    Chan, J., Alegre, T.P.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Gröblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478(7367), 89–92 (2011)CrossRefADSGoogle Scholar
  29. 29.
    Teufel, J.D., Donner, T., Castellanos-Beltran, M.A., Harlow, J.W., Lehnert, K.W.: Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnol. 4(12), 820–823 (2009)CrossRefADSGoogle Scholar
  30. 30.
    Suzuki, M.: Decomposition formulas of exponential operators and Lie exponentials with some applications to quantum mechanics and statistical physics. J. Math. Phys. 26, 601 (1985)MathSciNetCrossRefADSzbMATHGoogle Scholar
  31. 31.
    Suzuki, M.: Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems. Commun. Math. Phys. 51(2), 183–190 (1976)CrossRefADSzbMATHGoogle Scholar
  32. 32.
    Loudon, R.: The quantum theory of light. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  33. 33.
    Kempe, J.: Quantum random walks—an introductory overview. Contemp. Phys. 44(4), 302–327 (2003). (Quant-ph/0303081)MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    de Oliveira, M.C., Moussa, M.H.Y., Mizrahi, S.S.: Continuous pumping and control of a mesoscopic superposition state in a lossy QED cavity. Phys. Rev. A 61, 063809 (2000)CrossRefADSGoogle Scholar
  35. 35.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, New York (2010)CrossRefzbMATHGoogle Scholar
  36. 36.
    Verhagen, E., Deleglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482(7383), 63–67 (2012)CrossRefADSGoogle Scholar
  37. 37.
    Chandrashekar, C.M., Srikanth, R., Subhashish, Banerjee: Symmetries and noise in quantum walk. Phys Rev. A 76, 022316 (2007)MathSciNetCrossRefADSGoogle Scholar
  38. 38.
    Okamoto, H., Gourgout, A., Chang, C.Y., Onomitsu, K., Mahboob, I., Chang, E.Y., Yamaguchi, H.: Coherent phonon manipulation in coupled mechanical resonators. Nat. Phys. 9(8), 480–484 (2013)CrossRefGoogle Scholar
  39. 39.
    Faust, T., Rieger, J., Seitner, M., Kotthaus, J., Weig, E.: Coherent control of a classical nanomechanical two-level system. Nat. Phys. 9(8), 485–488 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jalil Khatibi Moqadam
    • 1
    • 2
  • Renato Portugal
    • 1
  • Marcos Cesar de Oliveira
    • 3
  1. 1.Laboratório Nacional de Computação Científica (LNCC)PetrópolisBrazil
  2. 2.Instituto de Física “Gleb Wataghin”, Universidade Estadual de CampinasCampinasBrazil
  3. 3.Instituto de Física “Gleb Wataghin”, Universidade Estadual de CampinasCampinasBrazil

Personalised recommendations