Quantum Information Processing

, Volume 14, Issue 9, pp 3233–3256 | Cite as

Algebraic synthesis of time-optimal unitaries in SU(2) with alternating controls

  • Clarice D. AielloEmail author
  • Michele Allegra
  • Börge Hemmerling
  • Xiaoting Wan
  • Paola Cappellaro


We present an algebraic framework to study the time-optimal synthesis of arbitrary unitaries in SU(2), when the control set is restricted to rotations around two non-parallel axes in the Bloch sphere. Our method bypasses commonly used control-theoretical techniques and easily imposes necessary conditions on time-optimal sequences. In a straightforward fashion, we prove that time-optimal sequences are solely parametrized by three rotation angles and derive general bounds on those angles as a function of the relative rotation speed of each control and the angle between the axes. Results are substantially different whether both clockwise and counterclockwise rotations about the given axes are allowed, or only clockwise rotations. In the first case, we prove that any finite time-optimal sequence is composed at most of five control concatenations, while for the more restrictive case, we present scaling laws on the maximum length of any finite time-optimal sequence. The bounds we find for both cases are stricter than previously published ones and severely constrain the structure of time-optimal sequences, allowing for an efficient numerical search of the time-optimal solution. Our results can be used to find the time-optimal evolution of qubit systems under the action of the considered control set and thus potentially increase the number of realizable unitaries before decoherence.


Time-optimal control Quantum control Quantum information processing 



This work was supported in part by the US Air Force Office of Scientific Research through the Young Investigator Program. C.D.A acknowledges support from Schlumberger. The authors would like to thank Seth Lloyd for discussions; exchanges with Ugo Boscain and Domenico D’Alessandro are also gratefully acknowledged.


  1. 1.
    Khaneja, N., Brockett, R., Glaser, S.J.: Time optimal control in spin systems. Phys. Rev. A 63, 032308-1–032308-13 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Boozer, A.D.: Time-optimal synthesis of SU(2) transformations for a spin-1/2 system. Phys. Rev. A 85, 012317-1–012317-8 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Garon, A., Glaser, sj, Sugny, D.: Time-optimal control of SU(2) quantum operations. Phys. Rev. A 88, 043422-1–043422-12 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Boscain, U., Chitour, Y.: Time-optimal synthesis for left-invariant control systems on SO(3). SIAM J. Control Optim. 44, 111–139 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boscain, U., Mason, P.: Time minimal trajectories for a spin 1/2 particle in a magnetic field. J. Math. Phys. 47, 062101-1–062101-29 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Boscain, U., Grönberg, F., Long, R., Rabitz, H.: Time minimal trajectories for two-level quantum systems with two bounded controls. arXiv:1211.0666v1, 42 pp. (2012)
  7. 7.
    Jelezko, F., Gaebel, T., Popa, I., Gruber, A., Wrachtrup, J.: Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401-1–076401-4 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Childress, L., Gurudev Dutt, M.V., Taylor, J.M., Zibrov, A.S., Jelezko, F., Wrachtrup, J., Hemmer, P.R., Lukin, M.D.: Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Hodges, J.S., Yang, J.C., Ramanathan, C., Cory, D.G.: Universal control of nuclear spins via anisotropic hyperfine interactions. Phys. Rev. A 78, 010303-1–010303-4 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Trelat, E.: Optimal control and applications to aerospace: some results and challenges. J. Optim. Theory Appl. 154, 713–758 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mischenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1961)Google Scholar
  12. 12.
    Carlini, A., Hosoya, A., Koike, T., Okudaira, Y.: Time-optimal quantum evolution. Phys. Rev. Lett 96, 060503-1–060503-4 (2006)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Billig, Y.: Time-optimal decompositions in SU(2). Quantum Inf. Process 12, 955–971 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jurdjevic, V., Sussmann, H.J.: Control systems on Lie groups. J. Differ. Equ. 12, 313–329 (1972). doi: 10.1016/0022-0396(72)90035-6 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lowenthal, F.: Uniform finite generation of the rotation group. Rocky Mt. J. Math. 1, 575–586 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Piovan, G., Bullo, F.: On coordinate-free rotation decomposition: Euler angles about arbitrary axes. IEEE Trans. Robot. 28, 728–733 (2012)CrossRefGoogle Scholar
  17. 17.
    Murray, R.M., Sastry, S.S., Zexiang, L.: A Mathematical Introduction to Robotic Manipulation, 1st edn. CRC Press Inc, Boca Raton (1994)zbMATHGoogle Scholar
  18. 18.
    Agrachev, A.A., Gamkrelidze, R.V.: Symplectic geometry for optimal control. In: Sussman, H.J. (ed.) Nonlinear Controllability and Optimal Control, vol. 133, pp. 263–277. M. Dekker, New York (1990)Google Scholar
  19. 19.
    Billig, Y.: Optimal attitude control with two rotation axes. arXiv:1409.3102, 22 pp. (2014)
  20. 20.
    Khaneja, N.: Switched control of electron nuclear spin systems. Phys. Rev. A 76, 032326-1–032326-8 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Mitrikas, G., Sanakis, Y., Papavassiliou, G.: Ultrafast control of nuclear spins using only microwave pulses: towards switchable solid-state quantum gates. Phys. Rev. A 81, 020305-1–020305-4 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Morton, J.J.L., Tyryshkin, A.M., Brown, R.M., Shankar, S., Lovett, B.W., Ardavan, A., Schenkel, T., Haller, E.E., Ager, J.W., Lyon, S.A.: Solid-state quantum memory using the 31P nuclear spin. Nature 455, 1085–1088 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Morton, J.J.L., Tyryshkin, A.M., Ardavan, A., Benjamin, S.C., Porfyrakis, K., Lyon, S.A., Briggs, G.A.D.: Bang–bang control of fullerene qubits using ultrafast phase gates. Nat. Phys. 2, 40–43 (2006)Google Scholar
  24. 24.
    Assémat, E., Lapert, M., Zhang, Y., Braun, M., Glaser, S.J., Sugny, D.: Simultaneous time-optimal control of the inversion of two spin-1/2 particles. Phys. Rev. A 82, 013415-1–013415-6 (2010)Google Scholar
  25. 25.
    Aiello, C.D., Cappellaro, P.: Time-optimal control by a quantum actuator. Phys. Rev. A 91, 042340-1–042340-8 (2015)Google Scholar
  26. 26.
    Burgarth, D., Maruyama, K., Murphy, M., Montangero, S., Calarco, T., Nori, F., Plenio, M.B.: Scalable quantum computation via local control of only two qubits. Phys. Rev. A 81, 040303-1–040303-4 (2010)Google Scholar
  27. 27.
    Zhang, Y., Ryan, C.A., Laflamme, R., Baugh, J.: Coherent control of two nuclear spins using the anisotropic hyperfine interaction. Phys. Rev. Lett. 107, 170503-1–170503-5 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Clarice D. Aiello
    • 1
    Email author
  • Michele Allegra
    • 2
  • Börge Hemmerling
    • 3
  • Xiaoting Wan
    • 4
  • Paola Cappellaro
    • 5
  1. 1.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Dipartimento di FisicaUniversità Degli Studi di Torino and INFNTurinItaly
  3. 3.Department of PhysicsHarvard UniversityCambridgeUSA
  4. 4.Research Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeUSA
  5. 5.Research Laboratory of Electronics and Department of Nuclear Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations