Quantum digital-to-analog conversion algorithm using decoherence
Article
First Online:
Received:
Accepted:
- 112 Downloads
Abstract
We consider the problem of mapping digital data encoded on a quantum register to analog amplitudes in parallel. It is shown to be unlikely that a fully unitary polynomial-time quantum algorithm exists for this problem; NP becomes a subset of BQP if it exists. In the practical point of view, we propose a nonunitary linear-time algorithm using quantum decoherence. It tacitly uses an exponentially large physical resource, which is typically a huge number of identical molecules. Quantumness of correlation appearing in the process of the algorithm is also discussed.
Keywords
Digital-to-analog conversion Quantum algorithm Bulk-ensemble computationNotes
Acknowledgments
This work was supported by the Grant-in-Aid for Scientific Research from JSPS (Grant No. 25871052).
Supplementary material
References
- 1.Aiello, A., Puentes, G., Woerdman, J.P.: Linear optics and quantum maps. Phys. Rev. A 76, 032323-1-12 (2007)MathSciNetADSCrossRefGoogle Scholar
- 2.Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit x states. Phys. Rev. A 81, 042105-1-7 (2010)ADSGoogle Scholar
- 3.Almeida, M.P., de Melo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)ADSCrossRefGoogle Scholar
- 4.Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
- 5.Bardhan, B.R., Brown, K.L., Dowling, J.P.: Dynamical decoupling with tailored wave plates for long-distance communication using polarization qubits. Phys. Rev. A 88, 052311-1-7 (2013)ADSMATHGoogle Scholar
- 6.Becker, E.D.: High Resolution NMR: Theory and Chemical Applications, 2nd edn. Academic Press, New York (1980)Google Scholar
- 7.Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
- 8.Berglund, A.J.: Quantum coherence and control in one- and two-photon optical systems (2000). arXiv:quant-ph/0010001
- 9.Boykin, P.O., Mor, T., Roychowdhury, V., Vatan, F., Vrijen, R.: Algorithmic cooling and scalable NMR quantum computers. Proc. Natl. Acad. Sci. USA 99(6), 3388–3393 (2002)ADSCrossRefMATHGoogle Scholar
- 10.Brodutch, A., Gilchrist, A., Terno, D.R., Wood, C.J.: Quantum discord in quantum computation. J. Phys.: Conf. Ser. 306, 012030-1-11 (2011)ADSGoogle Scholar
- 11.Brüschweiler, R.: Novel strategy for database searching in spin liouville space by NMR ensemble computing. Phys. Rev. Lett. 85, 4815–4818 (2000)ADSCrossRefGoogle Scholar
- 12.Foroozandeh, M., Adams, R.W., Meharry, N.J., Jeannerat, D., Nilsson, M., Morris, G.A.: Ultrahigh-resolution NMR spectroscopy. Angew. Chem. Int. Ed. 53, 6990–6992 (2014)CrossRefGoogle Scholar
- 13.Freeman, R.: Selective excitation in high-resolution NMR. Chem. Rev. 91, 1397–1412 (1991)CrossRefGoogle Scholar
- 14.Gruska, J.: Quantum Computing. McGraw-Hill, London (1999)Google Scholar
- 15.Hamieh, S., Kobes, R., Zaraket, H.: Positive-operator-valued measure optimization of classical correlations. Phys. Rev. A 70, 052325-1-6 (2004)ADSCrossRefGoogle Scholar
- 16.Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A. 34, 6899–6905 (2001)Google Scholar
- 17.Holevo, A., Giovannetti, V.: Quantum channels and their entropic characteristics. Rep. Prog. Phys. 75, 046001-1-30 (2012)MathSciNetADSCrossRefMATHGoogle Scholar
- 18.Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)MathSciNetADSCrossRefMATHGoogle Scholar
- 19.Jeong, Y.C., Lee, J.C., Kim, Y.H.: Experimental implementation of a fully controllable depolarizing quantum operation. Phys. Rev. A 87, 014301-1-4 (2013)ADSCrossRefGoogle Scholar
- 20.Jones, J.A.: Quantum computing with NMR. Prog. NMR Spectr. 59, 91–120 (2011)CrossRefMATHGoogle Scholar
- 21.Khitrin, A.K., Michalski, M., Lee, J.S.: Reversible projective measurement in quantum ensembles. Quantum Inf. Process. 10, 557–566 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 22.Kitagawa, M., Kataoka, A., Nishimura, T.: Initialization and scalability of NMR quantum computers. In: Shapiro, J.H., Hirota, O. (eds.) Proceedings of the 6th International Conference on Quantum Communication, Measurement and Computing (QCMC2002), pp. 275–280. Rinton Press, Princeton (2003)Google Scholar
- 23.Klenke, A.: Probability Theory: A Comprehensive Course. Springer, London (2008)CrossRefGoogle Scholar
- 24.Kondo, Y., Nakahara, M., Tanimura, S., Kitajima, S., Uchiyama, C., Shibata, F.: Generation and suppression of decoherence in artificial environment for qubit system. J. Phys. Soc. Jpn. 76, 074002-1-11 (2007)ADSGoogle Scholar
- 25.Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501-1-4 (2008)ADSCrossRefGoogle Scholar
- 26.Li, C.K., Roberts, R., Yin, X.: Decomposition of unitary matrices and quantum gates. Int. J. Quantum Inf. 11, 130015-1-10 (2013)MathSciNetGoogle Scholar
- 27.Long, G.L., Xiao, L.: Experimental realization of a fetching algorithm in a 7-qubit NMR spin Liouville space computer. J. Chem. Phys. 119, 8473–8481 (2003)ADSCrossRefMATHGoogle Scholar
- 28.Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303-1-6 (2008)ADSGoogle Scholar
- 29.Mehring, M., Weberruß, V.A.: Object-Oriented Magnetic Resonance. Academic Press, San Diego (2001)Google Scholar
- 30.Microchip Technology Inc.: MCP4725 Data Sheet (2007); ibid. MCP4801/4811/4821 Data Sheet (2010)Google Scholar
- 31.Milburn, G.J., White, A.G.: Quantum computing using optics. In: Meyers, R.A. (ed.) Computational Complexity, pp. 2437–2452. Springer, New York (2012)CrossRefGoogle Scholar
- 32.Morris, G.A., Freeman, R.: Selective excitation in Fourier transform nuclear magnetic resonance. J. Magn. Res. 29, 433–462 (1978)ADSGoogle Scholar
- 33.Nakajima, Y., Kawano, Y., Sekigawa, H.: A new algorithm for producing quantum circuits using KAK decompositions. Quantum Inf. Comput. 6, 067–080 (2006)MathSciNetGoogle Scholar
- 34.Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
- 35.Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901-1-4 (2001)ADSCrossRefGoogle Scholar
- 36.Ortigosa-Blanch, A., Capmany, J.: Subcarrier multiplexing optical quantum key distribution. Phys. Rev. A 73, 024305-1-4 (2006)ADSCrossRefGoogle Scholar
- 37.Peters, N., Altepeter, J., Jeffrey, E., Branning, D., Kwiat, P.: Precise creation, characterization and manipulation of single optical qubits. Quantum Inf. Comput. 3, 503–517 (2003)MathSciNetMATHGoogle Scholar
- 38.Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quantum Inf. Comput. 7, 1–51 (2007)MathSciNetMATHGoogle Scholar
- 39.Radulov, G., Quinn, P., Hegt, H., van Roermund, A.: Smart and Flexible Digital-to-Analog Converters. Springer, Heidelberg (2011)CrossRefMATHGoogle Scholar
- 40.Ramelow, S., Ratschbacher, L., Fedrizzi, A., Langford, N.K., Zeilinger, A.: Discrete tunable color entanglement. Phys. Rev. Lett. 103, 253601 (2009)ADSCrossRefGoogle Scholar
- 41.SaiToh, A., Kitagawa, M.: Numerical analysis of boosting scheme for scalable NMR quantum computation. Phys. Rev. A 71, 022303-1-13 (2005)ADSCrossRefGoogle Scholar
- 42.SaiToh, A., Kitagawa, M.: Matrix-product-state simulation of an extended Brüschweiler bulk-ensemble database search. Phys. Rev. A 73, 062332-1-19 (2006)ADSCrossRefGoogle Scholar
- 43.SaiToh, A., Rahimi, R., Nakahara, M.: Limitation for linear maps in a class for detection and quantification of bipartite nonclassical correlation. Quantum Inf. Comput. 12, 0944–0952 (2012)MathSciNetGoogle Scholar
- 44.Schmüser, F., Janzing, D.: Quantum analog-to-digital and digital-to-analog conversion. Phys. Rev. A 72, 042324-1-8 (2005)ADSCrossRefMATHGoogle Scholar
- 45.Schulman, L.J., Vazirani, U.V.: Molecular scale heat engines and scalable quantum computation. In: Proceedings of 31st Annual ACM Symposium on Theory of Computing (STOC99), pp. 322–329. ACM, New York (1999)Google Scholar
- 46.Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum logic circuits. IEEE TCAD 25, 1000–1010 (2006)Google Scholar
- 47.Shiryaev, A.N.: Probability, 2nd edn. Springer, New York (1996). Translated by R.P. BoasGoogle Scholar
- 48.Tarasov, V.E.: Quantum computer with mixed states and four-valued logic. J. Phys. A: Math. Gen. 35, 5207–5235 (2002)MathSciNetADSCrossRefGoogle Scholar
- 49.Tucci, R.R.: A rudimentary quantum compiler (1999). arXiv:quant-ph/9902062
- 50.Usmani, I., Afzelius, M., de Riedmatten, H., Gisin, N.: Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. Nat. Commun. 1, 12-1-7 (2010)ADSCrossRefGoogle Scholar
- 51.Vartiainen, J.J., Möttönen, M., Salomaa, M.M.: Efficient decomposition of quantum gates. Phys. Rev. Lett. 92, 177902-1-4 (2004)ADSCrossRefGoogle Scholar
- 52.Ventura, D., Martinez, T.: Initializing the amplitude distribution of a quantum state. Found. Phys. Lett. 12, 547–559 (1999)MathSciNetCrossRefGoogle Scholar
- 53.Watrous, J.: Quantum computational complexity. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 1–40. Springer, New York (2009, 2014). arXiv:0804.3401
- 54.Xiao, L., Jones, J.A.: NMR analogues of the quantum Zeno effect. Phys. Lett. A 359, 424–427 (2006)ADSCrossRefGoogle Scholar
- 55.Xiao, L., Long, G.L.: Fetching marked items form an unsorted database in NMR ensemble computing. Phys. Rev. A 66, 052320-1-5 (2002)ADSCrossRefMATHGoogle Scholar
- 56.Zhang, T., Yin, Z.Q., Han, Z.F., Guo, G.C.: A frequency-coded quantum key distribution scheme. Opt. Commun. 281, 4800–4802 (2008)ADSCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 2015