Quantum Information Processing

, Volume 14, Issue 7, pp 2487–2497 | Cite as

One-way deficit of two-qubit \(X\) states

  • Yao-Kun WangEmail author
  • Naihuan Jing
  • Shao-Ming Fei
  • Zhi-Xi Wang
  • Jun-Peng Cao
  • Heng Fan


Quantum deficit originates in questions regarding work extraction from quantum systems coupled to a heat bath (Oppenheim et al. in Phys Rev Lett 89:180402, 2002). It links quantum correlations with quantum thermodynamics and provides a new standpoint for understanding quantum non-locality. In this paper, we propose a new method to evaluate the one-way deficit for a class of two-qubit states. The dynamic behavior of the one-way deficit under decoherence channel is investigated, and it is shown that the one-way deficit of the \(X\) states with five parameters is more robust against decoherence than entanglement.


One-way deficit Concurrence Phase flip channel 



This work was supported by the Science and Technology Research Plan Project of the Department of Education of Jilin Province in the Twelfth Five-Year Plan, the National Natural Science Foundation of China under Grant Nos. 11175248, 11275131, 11305105.


  1. 1.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)zbMATHMathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., Wiesner, S.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)zbMATHMathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)zbMATHMathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)zbMATHMathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Giorgi, G.L., Bellomo, B., Galve, F., Zambrini, R.: Genuine quantum and classical correlations in multipartite systems. Phys. Rev. Lett. 107, 190501 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Streltsov, A., Adesso, G., Piani, M., Bruß, D.: Are general quantum correlations monogamous? Phys. Rev. Lett. 109, 050503 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Li, B., Wang, Z.X., Fei, S.M.: Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A 83, 022321 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Shi, M., Sun, C., Jiang, F., Yan, X., Du, J.: Optimal measurement for quantum discord of two-qubit states. Phys. Rev. A 85, 064104 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Vinjanampathy, S., Rau, A.R.P.: Quantum discord for qubit-qudit systems. J. Phys. A 45, 095303 (2012)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Oppenheim, J., Horodecki, M., Horodecki, P., Horodecki, R.: Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Horodecki, M., Horodecki, K., Horodecki, P., Horodecki, R., Oppenheim, J., Sen(De), A., Sen, U.: Local information as a resource in distributed quantum systems. Phys. Rev. Lett. 90, 100402 (2003)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Adesso, G., Datta, A.: Quantum versus classical correlations in Gaussian states. Phys. Rev. Lett. 105, 030501 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen(De), A., Sen, U., Synak, B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Horodecki, M., Horodecki, P., Oppenheim, J.: Reversible transformations from pure to mixed states and the unique measure of information. Phys. Rev. A 67, 062104 (2003)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Oppenheim, J., Horodecki, K., Horodecki, M., Horodecki, P., Horodecki, R.: Mutually exclusive aspects of information carried by physical systems: complementarity between local and nonlocal information. Phys. Rev. A 68, 022307 (2003)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Streltsov, A., Kampermann, H., Bruß, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Chuan, T.K., Maillard, J., Modi, K., Paterek, T., Paternostro, M., Piani, M.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Streltsov, A., Kampermann, H., Bruß, D.: Linking quantum discord to entanglement in a measurement. Phys. Rev. Lett. 106, 160401 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Kim, H., Hwang, M.R., Jung, E., Park, D.: Difficulties in analytic computation for relative entropy of entanglement. Phys. Rev. A 81, 052325 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Wang, Y.K., Ma, T., Li, B., Wang, Z.X.: One-way information deficit and geometry for a class of two-qubit states. Commun. Theor. Phys. 59, 540 (2013)zbMATHMathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Shao, L.H., Xi, Z.J., Li, Y.M.: Remark on the one-way quantum deficit for general two-qubit states. Commun. Theor. Phys. 59, 285 (2013)zbMATHMathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Maziero, J., Céleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yao-Kun Wang
    • 1
    • 2
    Email author
  • Naihuan Jing
    • 3
    • 4
  • Shao-Ming Fei
    • 5
    • 6
  • Zhi-Xi Wang
    • 5
  • Jun-Peng Cao
    • 2
    • 7
  • Heng Fan
    • 2
    • 7
  1. 1.College of MathematicsTonghua Normal UniversityTonghuaChina
  2. 2.Institute of PhysicsChinese Academy of SciencesBeijingChina
  3. 3.School of Mathematical SciencesSouth China University of TechnologyGuangzhouChina
  4. 4.Department of MathematicsNorth Carolina State UniversityRaleighUSA
  5. 5.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  6. 6.Max-Planck Institute for Mathematics in the SciencesLeipzigGermany
  7. 7.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations